The Magnetic Levitation System (MLS) is a nonlinear, open-loop, unstable time varying frictionless dynamical system. The basic principle of MLS operation is to apply the voltage to an electromagnet to keep a ferromagnetic sphere levitated. Moreover, the sphere can follow a desired position value varying in time. The coil current is measured to explore identification and multi loop or nonlinear control strategies. To levitate the sphere a real-time controller is required. The equilibrium stage of two forces (the gravitational and electromagnetic) is maintained by the controller to keep the sphere in a desired distance from the magnet. The system is fully integrated with MATLAB/Simulink and operates in the real-time in MS Windows. The PC equipped with the RT-DAC/PCI I/O board communicates with the power interface. The user can create his own controller in a fast and easy way.
In the lab, we have two different MagLev system implementations: one having a single magnet, and another having two magnets, one at the top and one at the bottom.