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Abstract

Deep Convolutional Neural Networks (CNNs) have recently become the subject of rigorous
investigation especially due to their favourable properties in the field of computer vision
and hence have been utilized in numerous related applications. Among these, image clas-
sification and semantic segmentation have acquired particular research interest. This work
is a part of an applied project funded by Reach-U - a company specializing in geographic
information systems, location based solutions and cartography - and is geared towards
smart city applications. In particular, the topic of this thesis is focused on the detection
of road features which includes both semantic segmentation and image classification. To-
wards accomplishing this goal, two ad-hoc datasets were produced containing specific road
features in accordance with the needs of the company. Towards graphical scene processing,
a novel lightweight CNN architecture was introduced in this thesis capable of performing
adequate semantic segmentation. For the problem of image classification, a custom CNN
was proposed and its performance compared to the state-of-the-art ResNet network, the
latter fine-tuned towards solving the same task. Despite the low number of network param-
eters, it is expected that the proposed segmentation network will have better performance
in the sense of shape detection even though its application results in lower accuracy lev-
els. In contrast, the proposed classifier reveals competitive accuracy with respect to its
counterpart. A graphical user interface has also been developed which uses the resulting
CNN as backend. The complete solution is suitable to satisfy the end goal which is the
construction of an appropriate 3D model based on 2D segmented images.
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Chapter 1

Background

Automation has always been one of the main goals of computer science, aiming to improve
everyday tasks, speed them up and possibly allow a higher ease of use. Following this
baseline, first special purpose machines such as the Difference Engine [9] were built, incor-
porating all of the required components and hard-coded knowledge to solve the task they
were designed for. When the idea of a general purpose machine sprout up however, re-
searchers started to look forward towards the possibility that these machines would actually
become intelligent [10] and, as time passed and programmable computers became reality,
these ideas continued growing and new theories were developed stating that machines could
actually develop their own intelligence [11].
Nowadays we know these ideas under the name of Artificial Intelligence (AI). AI attracted
significant research interest and thus became a widespread research field and has had
a continuingly increasing involvement in several different practical applications, starting
from the medical field with medical imaging analysis [12,13,14,15] to autonomously driving
cars [16, 17] and robotics [18,19].
But what does Artificial Intelligence mean? The term was founded by John McCarthy in
1955 who, one year later, started the Dartmouth Summer Research Project on Artificial
Intelligence, which marked AI as a standalone field. From that moment on several pieces
of literature have been dedicated to what an artificial intelligence is and to whether a
machine might be capable of thinking, however after over 65 years there is not an official
reference definition yet and the term is often misused or misunderstood. A lot of the
confusion, perhaps, comes from the ambiguity of what we consider to be intelligent. In
any case, whichever its meanining might be, Turing stated that for a machine to become
intelligent it is crucial to undergo an educational process which will allow it to build its
own knowledge. Other approaches, such as that of instilling hard-coded logic into the so-
called knowledge-driven systems, have been pursued by researchers with poor results [20].
Nevertheless, these results hightlighted the need for a machine to extract its own knowledge
from raw data. This process has become known as Machine Learning. Although machine
learning algorithms have had several different implementations, in recent years one of them
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has been having outstanding outcomes and received a incredible boost in terms of research
interest and fundings from companies: we are talking about Deep Learning.
Before addressing the core aspects of this work, this chapter will provide some general
background information. We will address Machine Learning developments by considering
some of the most important milestones in history. The most relevant theoretical topics will
also be covered and expanded in mathematical terms in order to provide a solid base. An
overview about this work arguments and its context will also be detailed in section 1.2.

Deep learning

Example:
      MLPs

Representation learning

Example:
Shallow
autoencoders

Example:
Logistic
regression

Machine learning

Example:
Knowledge
bases

AI

Figure 1.1: Relationships between applied artificial intelligence concepts, also referred to
as “AI Circles” [1]

1.1 History and Theoretical Insights

Within this section we will provide a brief historical background regarding the topics de-
veloped in this script. We will discuss Machine Learning and Artificial Intelligence history,
further lingering on the theoretical aspect that are most relevant to the addressed top-
ics as soon as they come up on the historical line. Specifically we will explore from a
neuroscientifical point of view how the concept of neural network was developed and how
it evolved into a more statistical approach in modern solutions. Starting from 1943, we
will discuss Neural Networks concept birth, introducing both mathematical and neuro-
scientifical aspects. We will then discuss the computer-brain analogy and move towards
the implemetation of the first machine learning algorithms. Due to their extreme pairing
with machine learning, we will also see and discuss computer vision techniques and how
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1 – Background

they were employed within the learning algorithms. Finally, we will see backpropagation,
a concept that stands as a base for modern deep learning methods, and some of the latest
architectural implementations.

Neuron and Neural Networks (1943)

Warren McCulloch, a neurophysiologist, and the mathematician Walter Pitts wrote a paper
about functioning of brain’s neurons [21,22]. In this paper, they described an approxima-
tion of the electrical neural signal displayed in presence of stimuli. Even if today the
concept of neurons and how their work could seem obvious, it must be taken into con-
sideration that Neuroscience was recognized as a standalone discipline only in mid-20th
century. Before 1943 it was considered part of other disciplines and very little was known
about brain and neuron functioning. The first empirical proof of how a neuron works was
provided by Alan Lloyd Hodgkin and Andrew Huxley in 1952. They achieved to create
the model of the signal transmission of squid neurons [23,24]. In the light of the period we
can consider this first attempt of neural modelling very surprising compared to the level
of knowledge about the brain and its signal propagation process. In McCulloch and Pitts
paper, a simple model of a neural network using an electrical circuit was also provided.
Neuroscience discipline lately brought us the knowledge of how neurons and neural net-
work works. We now know that brain is composed by more than 10 billion neurons, each
connected with 10 thousand other neurons trough dendrites and axons. The connection
within neurons are fundamental for the propagation of the chemical and eclectic signal.
Neurons are characterized by an all or nothing threshold, it means that a neuron will fire if
and only if the signal received is enough to overcome the minimum required [25]. In these
terms, neurons seem very close to a programming language: in fact, the binary system
employed by computer consists in 0 or 1. Zero for the absence and 1 for the presence of
the characteristic.
When designing an artificial neural network, this activation is modelled by a mathematical
function which emits or fires a value under certain conditions. Several types of activation
functions exist and all provide different features, sigmoid function for example models the
output in values between 0 and 1 while the hyperbolic tangent (or tanh) does the same
between −1 and 1 (Figure 1.2a). In most of the cases anyway, the choice of the activation
function would fall upon one which introduces a non linearity inside the network. Using
a Linear function can in fact hamper the backpropagation system because its derivative
would always be constant and not related to the input, moreover it would nullify any effort
to build deeper networks: all the layers would collapse into a single one since a linear
combination of linear functions still is a linear function.
The sigmoidal units described above provide a saturated output for most of their domain
values (0 or −1 for very negative values and 1 for very positive) and susceptible to the
input only when its value is close to zero. Such saturation might once more hamper most
of the gradient based learnings, therefore an other activation unit has taken hold and is
nowadays a de facto standard in CNN design: the Rectified Linear Unit or ReLU.
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ReLu is a simple activation function which returns the input as is whenever greater than
zero and returns 0 for every value below it:

f(x) = max(0, x). (1.1)

The powerful aspect of ReLU resides in the fact that it introduces a non linearity in
the system, while keeping linear properties for most of its values (Figure 1.2b). Other
advantages are that it increases the grade of sparsity (all values < 0 are zero-ed) and
diminishes the likelihood of having vanishing gradients, while being inexpensive to use.
Generally speaking, deep networks using rectified linear are easier to train than those
using units with a curvature like the softplus or with a double-sided saturation [26].
Finally, an other function worth noticing is the softmax activation function. Softmax can
be though of as a generalization of the sigmoid when trasposed to a multiclass problem
and is basically a normalized exponential function defined in the following way [27]:

σ(x)i = exi∑K
j=1 e

xj
for i = 1, ..., K and x = (x1, ..., xK) ∈ RK .

In other words, we take the exponential of each element of the input x and normalize it
by dividing it by the sum of the exponentials of all the other elements. As a result, we
will obtain a set of values in [0, 1] summing to 1, which naturally resembles a probability
distribution. For this reason, softmax is often used as the activation of function for the
last layer in neural networks.
To conclude, several possibilities exist when it comes to the choice of the activation func-
tions, however it has been prooven that rectified linear unit and its variants yield to better
results when applied to the output of the hidden units of deep neural network, thus making
them the default choice in most of the cases.

0

1

-1

0.5

-0.5

0-2-4 2 4

sigmoid
tanh
linear

(a)

2

4

0

3

1

0-2-4 2 4

ReLU
Softplus

(b)

Figure 1.2: Examples of Activation Functions.
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1 – Background

Machine Learning and Artificial Neural Networks (1949)

Donald Hebb presents his theories about neuron excitement and communication in his
book “The Organization of Behavior” [28]. In his work, Hebb states:

“When one cell repeatedly assists in firing another, the axon of the first cell
develops synaptic knobs (or enlarges them if they already exist) in contact with
the soma of the second cell”

thus giving life to what is know as Hebbian Theory. Basing on brain neurons behaviors and
interaction described by this theory, the first Machine Learning models were originated.
As a matter of fact, these concepts were translated in computer science for the creation of
artificial neural networks and artificial neurons. Artificial neural network (ANN) connec-
tion was based on two assumptions. The connections between neurons that are activated
at the same time are defined Strong, those between neurons that are activated separately
are defined as Weak. The type of connection between two neurons is defined by a “weight”
and it is used to describe the relationships and nodes between neurons [29, 30]. Artificial
neural networks are based on this model; however, they are still far from matching with
their original competitor: the brain. ANN, in fact, are not able to reach the same level
of complexity, even if they have shown good problem solving in tasks difficult for humans
such as image recognition and prediction based on past knowledge.

Brain-Computer Analogy and Turing Machine (1950)

With the advance of the computer technology, the brain – computer analogy was brought
to its extreme. From the technological and IT point of view, this analogy was interesting
source of inspiration. The brain in fact is extremely powerful both in terms of compu-
tational power and efficiency since it is able to perform an incredibly high amount of
operation in parallel using low energy. On one side, this analogy lead to the development
of the simulation of a first hypothetical neural network. On the other side this metaphor
was extremely damaging for the advances in Neuroscience research, which tried to organize
and model brain functioning from computer behavior. In the same years Turing creates
his “Turing test” [11]. Turing test consisted in discriminating whether the answer given to
a participant’s question came from a person or an AI (see Figure 1.3 for setting). To pass
the test, the computer must be able to produce human-like answer such that the partic-
ipant would not be able to tell the human and the computer apart. The most incredible
results achieved by this test was that the participants were indeed not able to discriminate
between the answers given by a real person and the ones produced by the machine.
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Figure 1.3: Turing Test Schema. The participant (C) has to discriminate whether the
answer to the question comes from A (machine) or B (human).

The Birth of Machine Learning (1952)

After the modelling of neural networks for, Arthur Samuel wrote the first computer learn-
ing program. The program consisted in a game in which the computer, basing on past
experience, had to develop strategies to win. From this program Arthur Samuel first came
up with the term “Machine Learning”. This is the first example of the application of
machine learning techniques. Keith D. Foote defined machine learning (ML) as the use of
algorithms to parse data, learn from it, and then make a determination or prediction about
something in the world. The machine is trained on a large amount of data by means of these
algorithms, thus giving it the ability to learn how to perform a given task [31]. The process
of learning begins with the observations of data in order to find a characterizing, repeated
pattern in it. Such patters are then used to build a mathematical model which will be used
to better identify future data and perform better predictions. In other words, machine
learning algorithms allow the computer to learn a representation from collected data and
then use it make different decisions without being specifically programmed to make them.
ML algorithms can be subdivided into to categories: Supervised and Unsupervised.

• Supervised algorithms. The starting point of these algorithms is always a training
phase where the machine uses a known, labelled dataset to infer functions and models
to make future predictions. The advantage given by a labelled dataset is that the
output produced by the machine can be compared with the correct answer, thus
allowing it to modify its behavior accordingly.

• Unsupervised algorithms. Contrary to supervised algorithm, unsupervised learning
bases the training on an unknown dataset. This means that neither label nor previous
classifications are present for comparison. Unsupervised learning studies how the
system can infer functions, cluster and describe hidden structure from a dataset.
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1 – Background

Machine learning also requires the analysis of massive quantities of data to learn a gen-
eralizing model. Consequently, the training phase usually requires a lot of time to reach
its end. Combining ML with AI and cognitive technologies can make such information
processing more efficient.

The Perceptron (1957)

In 1957, Frank Rosenblatt combined Donald Hebb’s model of brain cell interaction with
Arthur Samuel’s Machine Learning efforts and created the Perceptron [32]. Perceptron
is basically a mathematical model of a biological neuron. Biological neuron receives and
emit electrical signal from axons and dendrites (Figure 1.4) In perceptron electric signals
were represented with numerical values. At the synapses between the dendrite and axons,
electrical signals are modulated by different weights. Moreover, biological neurons fires if
and only if the received signal has a big enough amplitude to surpass a given threshold. In
a similar way, in the perceptron the signal amplitude is obtained by the weighted sum of all
the inputs. Such sum can be used as the argument of a properly set step function, which
will act as a threshold and determine the output (Figure 1.5). In mathematical terms, this
behavior can be described by the following formula [33]:

f(x) = g(w0 + n
∑

wixi) = g(w0 + w · x), (1.2)

where g(·) is an activation function, in this case a step, w0 is the bias and w · x is the dot
product between the input the weight vector.

Figure 1.4: Scheme of a Brain Neuron. Densdrites and Axos represent connections between
single neurons and layers through which the signals flow.
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Figure 1.5: Scheme of the Single Layer Perceptron.

Equation 1.2 describes the behavior of a single perceptron and allows us to solve a binary
classification problem by providing the probability of a given input of belonging to a certain
class. In particular, the output can be either be 1, if the input belongs to the class, or 0 if
not. To represent multi-class classification problems, instead, we need to use a number of
perceptrons which depends on the number of classes to solve [34]. In this case, perceptrons
are organized in a chain where each has its own weight vector and the final prediction is
done with a one-vs-rest strategyIn this case, perceptrons are organized in a chain where each
has its own weight vector and the final prediction is done with a one-vs-rest strategy [35].
In multi-layer perceptrons (MLPs), the layers between the input and the output are referred
to as hidden layers and might be perceptrons themselves. In this case, we say that the
model contains N nodes, where N is the total number of hidden layers. Each layer in a
MLP is associated with a weight matrix and an activation function which is applied to its
output (Figure 1.6).
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Figure 1.6: Scheme of a Multi-Layer Perceptron.

Suppose to have a l layers multi-layer perceptron, then l−1 transformations will take place
between the layers. IfWn,..., Wl−1 are weight matrices, then an MPL can be described as:

f(x) = g(Wl−1g(Wl−2...x)).

This first perceptron and its multilayer version was nothing but an attempt to simulate the
process occurring in the human brain. As previously mentioned, the single perceptron was
in fact way far from reproducing the complexity of a neural network and from the modern
complexity of multilayer neural network. This attempt to simulate the brain processes was
however remarkably important and posed some of the bases for future research in this field.

ADALINE and MADALINE (1959)

Stanford, 1959, Bernard Widrow and Marcian Hoff developed ADALINE and MADALINE
(Multiple Adaptive Linear Elements). The main objective of ADALINE - and its multi-
layer version MADALINE - was that to recognize binary patterns [36]. This neural network
was the first neural network applied to real world problem. By reading a stream of bits
from a telephone line, it was able to predict the next bit using an adaptive filter that
eliminates echoes on the lines. The main difference with the Perceptron was in the fact
that ADALINE used the weighted sum of its input to update the layer’s weight instead of
using the output.
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Learning Weights Approaches (1962)

Widrow and Hoff develop a learning procedure that analyzes the input value before be-
fore being adjusted by the neuron weights (and turning to either 0 or 1). This learning
procedure used the rule Weight Change = (Pre-Weight line value) * (Error / (Number
of Inputs)) [37] to adjust the weight values and distribute them to the remaining nodes.
This theory is based on the idea that, if the error is correctly weighted, a perceptron can
better modify and correct its learning. Despite the initial interest for neural network devel-
opment, papers suggesting the non-extensibility of single-layer neural network to multiple
layer ones were published in this period. In addition, researchers in this field were using
shared weights across all the layers, which basically prevented them from learning differ-
ent representations and features from data. These approaches resulted in failure when
employed in real applications and consequently in a shortage of funding.

Birth of Computer Vision (1965)

In these years, computer scientists were also focusing on mimicking human vision on com-
puters. First experiments were carried out with the aim of having a computer “see” objects
in multimedia files (e.g. images and videos) and report such information. Before the birth
of Computer Vision, image analysis was performed manually with the employment of x-ray
and MRI. All-in-all, technology in these years was very rudimentary, however it posed a
first base for future development, which significantly improved in the early 21st century
with the introduction of more complex algorithms [38].

Nearest Neighbour Algorithms (1967)

This family of algorithms allowed a program to perform a very basic pattern recognition,
thus marking the beginning of pattern recognition algorithms research. Nearest neighbor
was firstly used for mapping routes and proved efficient in finding solutions to “Travelling
Salesperson” problem [39]. The aim of the algorithm was to find the optimal route for a
salesperson who had to program an efficient order to visit a set of potential customers.

Backpropagation (1970s – 1980s)

With the advent of multilayer neural network, researchers were trying to find solution for
applying Widrow-Hoff rule to multilayer networks. Three independent groups from the
Psychology Department of Stanford university were approaching possible solutions. The
idea was to send a feedback to the previous stages and layers of the neural network to
dynamically adjust the weights in order to have a more efficient learning. This solution
was called backpropagation [40]. Backpropagation allows a network to adjust its hidden
layer weight to adapt to new situation and data. Nowadays backpropagation is still in use
to train deep neural networks, therefore we will provide a deeper insight on the topic.
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When designing a feedforward neural network, what we create is a model that accepts an
input x and produces an output ŷ. In this setting, information provided by x propagates to
the hidden units of the first layer, then flows through all the others until the output unit is
reached and a cost J(Θ) is calculated on the goodness of the prediction. In order to train
the network and achieve better performance, the information from the cost is allowed to
flow backwards throughout the network and weights are updated so that, on the next run,
the cost would possibly be lower. The updates for the weights are obtained by calculating
the gradient given a certain cost. This operation can become very expensive in terms of
numeric computation, therefore we employ backpropagation algorithm as a mean to make
it simpler and very inexpensive.
Back-propagation algorithm has its foundation on a rather simple mathematical property
of derivatives, called the chain rule of calculus. By this property, the derivative of a
function made by the composition of other functions is given by the product of other
known derivates. Let f(x) : R→ R and y = g(x) : R→ R, then the derivative of their
composition z = f(g(x)) = f(y) is given by:

dz
dx = dz

dy
dy
dx. (1.3)

When we transpose this calculus from the scalar case to the multi-dimensional one we
obtain partial derivatives of z with respect to all the elements of x. In particular, suppose
x ∈ Rn and y ∈ Rm and let y = g(x) : Rn → Rm and f : Rm → R, then the partial
derivatives of z = f(y) are given by:

∂z

∂xi
=

m∑
j=1

∂z

∂yj

∂yj

∂xi
. (1.4)

If we write it in vector notation:

∇xz =
(
∂y

∂x

)T

∇yz = Jy(x)∇yz. (1.5)

Where Jy(x) is the Jacobian matrix of y with respect to x and it is a m x n matrix. What
this notation highlights is that the gradient of a variable x can be obtained by multiplying
the Jacobian Jy(x) by the gradient of z with respect to y. If we recursively apply this
calculus for each node in the network, we have implement the back-propagation algorithm.

Gradient Descent and Optimizers

In most cases, the concept of back-propagation is misused or misunderstood. As we pre-
viously described, back-propagation algorithm provides an efficient way to calculate the
gradient given a certain cost by recursively considering hidden units in a network. The
algorithm, however, does not define a policy to update the weights using such gradient,
instead this is done by the optimizers. The term refers to the fact that we are trying to
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minimize (or maximize) a function f(x) by varying x. Such function is typically referred
to as the objective function and, given that we want to minimize it, we also call it cost or
loss function (See 1.1).
Most of the optimizers rely on the concept of Gradient Descent [41], which takes into
account the derivative of a function to determine the direction of the next step to take
towards reaching a minimum (or a maximum) in such function. In particular, a minimum
point might be local or global. It is called a local minimum if the sorrounding points have
higher value, but there exists at least an other point with a lower one. It is called a global
minimum if no other points have lower value (although there can be points with the same
value, i.e. multiple global minima). A characteristic of local/global minima/maxima is
that the derivative in such points is 0. An other type of points which have 0 derivative
but are neither minima, nor maxima are the saddle points. In general, a point where
the derivative is equal to 0 is called a critical or stationary point and it will not provide
any information on which direction to take. In the context of Deep Learning it might be
very difficult to reach a global minimum, since several local minima or other stationary
points might be present and might halt the learning. We therefore seek solutions yielding
acceptable performances even if not optimal. In Figure 1.7 we provide an example of how
the derivate is used in gradient descent.

0

1

-1

0.5

-0.5

0-2-4 2 4

For x < 0, f'(x) has a negative value:
this means we have to lower f(x) value 
by moving to the right

For x > 0, f'(x) is positive:
by moving to the left, we decrease f

A global minimum: gradient descent stops
here because of null derivative.

Figure 1.7: Gradient Descent Example. Given a certain position on f(x), in order to reach
the central point (a global minimum) we need to move in a direction opposite in sign with
respect to the derivative calculated on the same position.

Usually, the goal is to minimize functions having multiple inputs and yet a single output
(this is a requirement for the minimization process to make sense). Because of this, we
leverage the concept of partial derivatives and of gradient, which is a generalization to a
vector where the element i is the partial derivative of the function with respect to input xi.
Whenever all the elements in a gradient are zero there is a critical point. Since we want to
find a minimum and the gradient determines the direction of the steepest increase of the
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(cost) function, we want to move in the opposite direction. Therefore, Gradient Descent
suggests to apply the following modification to the function input:

w ← w− ε∇wf(w), (1.6)

where ε is a constant — typically in the range [10−1,10−6] — called learning rate. The
choice of the learning rate is often crucial and should be carefully taken since it determines
the size of the next step. If it is too high we might miss a minimum and the loss might
even diverge, if it is too low we might not make significant improvements and never reach
a convergence (Figure 1.8).

value of weight wi 

loss

We’ll get there
efficiently.

starting point

(a) Acceptable Learning Rate

value of weight wi 

loss

starting point

Small learning rate
    Takes forever!

(b) Too Low Learning Rate
value of weight wi 

loss

Overshoots the
minimum!

starting point

(c) Too High Learning Rate

Figure 1.8: Learning Rate Choice Examples [2]

If we write down the Taylor series approximation of the cost function and perform some
calculations, we find out that the optimal learning rate is given by the inverse of the second
order derivate. In vector calculus, the second order derivates take the shape of a Hessian
matrix. Calculating the Hessian matrix and its inverse at every step during the training
phase of a network is computationally very expensive, therefore what its typically done is
to define the LR within a certain range and eventually perform some adjustments during
the training iterations.

Stochastic Gradient Descent. The update mechanics explained so far refer to what
is considered the vanilla Gradient Descent, also referred to as Batch Gradient Descent. In
this setting, the algorithm computes the gradient on all the samples contained inside the
training set before performing an update, however this is most often unfeasible or unwanted
due to the high number of samples.
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At the extreme opposite we find a variant which uses single samples randomly taken from
the dataset: this is the Stochastic Gradient Descent or SGD. This optimizer performs an
update on the weights for each sample encountered and, because of this, may cause very
violent fluctuations on the cost function. This has both a positive and a negative side.
On one hand the frequent updates and oscillations allow SGD to explore a wider solution
space, therefore making it more probable to identify better local minima. On the other
hand, SGD might keep on overshooting and eventually skipping an exact minimum, thus
making convergence more difficult.
A third variant takes the best from the previous two ones and puts them together into
randomly selected mini-batches, hence the name Mini-Batch Gradient Descent. Often
referred to as SGD, this version of the algorithm estimates the gradient value by calculating
the average gradient on m (mini-batch size) samples. In this way, since a wider range of
samples is taken into consideration, a more accurate gradient estimate is achieved, while the
update frequency remains high. This method might lead to a slow asymptotic convergence,
however the rapid progress in the initial steps make it a valid choice with respect to its
vanilla version. Other extensions of SGD use momentum or nesterov accelerations to
achieve higher convergence rates, yet the underlying algorithm remains the same.

Adaptive Learning Rate Optimizers. Adagrad [42] is an other famous optimization
algorithm, which relies on a simple idea: adjust the learning rate such that parameters
relating to the most frequenty occurring features undergo lighter updates, while those
relating to infrequent features are updated more heavily. Because of this setting, it is
mainly suitable for very sparse datasets. Adadelta [43] is an extension of Adagrad which
tries to reduce its aggressive, inesorable learning rate decrease.
Finally, an other adaptive learning rate optimization algorithm is Adam [44]. Adam stands
for Adaptive Moment Estimation and it assigns individual learning rates for each param-
eter. The concept is similar to that of momentum in which older gradients are conveyed
into an exponentially decaying average, however it also includes concepts from Adadelta
and keeps a decaying average of the squared old gradients too. Its been shown by the
authors that Adam performs very well compared to other adaptive learning algorithms
and is nowadays among one of the most used ones.

Loss and Concept of Risk

Deep learning algorithm often operate in a supervised learning setup. This means that
together with the training data we know all the corresponding labels, it is therefore possible
to provide a measure of how good the algorithm is performing on a given pair (sample,
true label). We therefore define a Loss or Cost function as the function providing such a
quality measure. Given a dataset D = {(x1, y1), ..., (xn, yn} where xi ∈ x ⊂ Rd ∀i ∈ [1, n]
represent data samples and yi ∈ y ⊂ R ∀i ∈ [1, n] and a classification function f(x)
represent the corresponding label, several possible Loss functions could be defined. Some
examples might be:
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• Classification Loss. This is the simplest loss function. It returns 1 if the classification
is wrong, 0 if it is right. using a synchronization software

L(yi, f(xi)) =

1 yi /= f(xi)
0 yi = f(xi)

. (1.7)

• L1 Loss. Also called Least Absolute Deviation (LAD) returns a loss value linear with
respect to the errors.

L(y, f(x)) =
n∑

i=1
|yi − f(xi)| . (1.8)

• L2 Loss or Least Square Errors. This cost function considers the square of the dif-
ference between the true label and the predicted one. It is typcally preferred to L1 ,
however its measure quality might suffer if the dataset contains outliers.

L(y, f(x)) =
n∑

i=1
(yi − f(xi))2. (1.9)

• Hinge Loss. It is manily used in classifiers which define and maximize a margin such
as Support Vector Machines. Hinge Loss penalizes all the predictions which are less
than 1, i.e. those which fall within the margins.

L(y, f(x)) = max(0,1− y · f(x)). (1.10)

• Log Loss or Cross-Entropy. Perhaps the most common loss function, it is used to
calculate the performance of a classification which produces class probability distri-
butions as output. The mesured cost is higher as the probability diverges from the
true label.

L(y, f(x)) = −(y · ln(f(x)) + (1− y)ln(1− f(x))) binary case

L(y, f(x)) = −
∑C

c=1 yc · ln(f(x)c), multi-class case
(1.11)

where c ∈ [1, C] is the class number and yc is a binary operator stating if c is the
correct label for the current observation.

The previous represent just a subset of the existing loss functions, altough they are among
the most used ones. In general, choosing the right loss function is crucial when designing
the learning algorithm for a classifier, also because a certain loss might require a different
activation function as the output of a deep learning model.
Very close to the concept of Loss, comes that of Risk. The risk is defined as the expected
value of the Loss function, therefore proving an estimate of how many mistakes will be
made on the predictions. This is an extremely important concept, because if we have
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a function determining how good the classification is going to be, then we can use such
function as the objective of a minimization algorithm and obtain an optimal classifier. The
formal definition of risk is given by the following:

RL,P (f) =
∫
L(y, f(x))dP (x, y), (1.12)

where RL,P (f) is the Risk calculated on the loss function L over a classifier f given a
certain probability distribution of data P . In a real case, data is not continuos but rather
discrete, i.e. a fraction of the whole, therefore we take a frequentist approach and the
integral becomes a sum:

RL,P (f) = 1
n

n∑
i=0

L(yi, f(xi)). (1.13)

A minimum risk corresponds to a better classification performance, we are thus interested
in minimizing it an obtaining an optimum:

f∗ = arg min
f
RL,P (f). (1.14)

In general, we define the Bayesian Risk as the expected value of the loss relatively to the
classifier which minimizes it. In other words, it is the optimal risk and is denoted as:

R∗L,P = RL,P (f∗). (1.15)

In the previous equations we do not take into account the data provenience, if either from
training or from testing. We are, however, interested in knowing the performance estimate
on test data since that would be the real application scenario. Nevertheless, test data
distribution is not known in advance. Why not using the Empirical Risk R̂n, i.e. the risk
of making mistakes on training data instead? Training data distribution is in fact known
a priori and by the law of large numbers, the frequency value tends to the expected value
when n → ∞, therefore by taking a large number of training samples the empirical risk
tends to the real risk, which can be minimized so to get close to the Bayesian Risk:

limn→∞ R̂n(f) = RL,P (f)

inff R̂n(f) = R∗L,P (f) for n→∞.
(1.16)

Although this seems to be the right path to follow, minimizing the empirical risk leads
to having a classifier composed of a set of delta functions perfectly matching training
samples and systematically mistaking on test ones. This problematic is commonly referred
to as overfitting. Because of this, using the empirical risk in this way is very dangerous
and perfect minimization is hence discouraged. Instead of this, we often adress an other
minimization problem that is the Structural Risk Minimization [45, 46]. Structural risk
introduces a regularizing unit which is in charge of controlling the trade-off between the
empirical risk minimization and the training-vs-test error gap, therefore avoiding to fall
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into overfitting.

Autoencoders (1987)

It is unclear, due to terminology differences which have slowly converged over time, if
this is the correct date for autoencoders birth. Nevertheless, in this year the autoencoder
concept was for the first time applied to ANN [1, 47]. The original idea was that to
perform dimensionality reduction or feature learning. Nowadays however, they have been
extensively applied to Generative Adversarial Models and as a basic structure for network
architectures able to reconstruct the input. An autoencoder is in fact a neural network
which is trained to “copy” its input to its output. A simple compy operation is of course
meaningless, therefore autoencoders are in some way constrained to learning more general
reconstructions.
In its core, an autoencoder can be subdivided into two modules, from which its name is
derived. The first one, h = f(x), performs a feature selection on the input or, in other
words, it learns its code and is therefore called encoder. The second one y = g(h) tries to
reconstruct the input basing on the features - often the most important ones - extracted
from the input by the encoder. Since in some way it reverts the job done by the encoder,
this part is called decoder.
Generally speaking, h and y can be single-layer neural networks (and so they were in
their original implementation) however, just like any other feedforward neural network,
autoencoders can largely benefit from greater depths. In fact, most recent implementations
exploit depth to learn more powerful data representations (Figure 1.9).

Figure 1.9: Deep Autoencoder Example. In the scheme, the latent space is also known as
bridge and represents the interface between encoder and decoder [3].

Convolutional Layer (1989)

The concept of Convolutional Layer was first brought up by LeCun et al. [48] and was
applied to build a neural network architecture able to recognize digits in a zip code. The
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main idea was that of performing an undersampling of the input image by means of a grid-
like unit called kernel. By being repeteadly applied on different points of the image, this
unit enables the most important features to proceed to the next step in the network, while
leaving the least important ones behind. Nowadays, we call these kind of architectures
Convolutional Neural Networks or CNNs.
The name convolution comes from the operation employed by the network which mainly
comes from mathemitcal and signal processing fields. Suppose f and w are two real and
integrable functions, then their convolution, denoted by the symbol ∗, is defined as:

s(t) = (f ∗ w)(t) =
∫ +∞

−∞
f(τ)w(t− τ)d(τ). (1.17)

In other words, a convolution is the integral of one function multipled by the inversed and
shifted version of a second one. The result is a function s which provides a description of
how the shape of one is varied by the other.
To make an example, imagine that we want to estimate the position of a moving car.
Suppose that information about its current position is provided by a GPS system, which
is somehow noisy: because of this, we want to obtain a cleaner estimation of the position.
To do so, we perform a weighted average of the position measurements, also taking into
consideration the fact that the latest measurements are more relevant than older ones for
the estimate. If the car position is described by the input function f(t) in time domain
while the weighting function is w(t), we can use equation 1.17 to obtain function s(t)
describing the weighted average car position. Note that, since it is inverted before the
multiplication, w(t) needs to be 0 for negative time values, otherwise the estimation will
consider future car positions which is impossible.
In real use cases, however, data streams are not continuos but rather discrete. In this case,
we switch the integral in equation 1.17 with a sum an obtain the following:

s(t) = (f ∗ w)(t) =
+∞∑

a=−∞
f(a)w(t− a) with a ∈ Z. (1.18)

When applied to convolutional neural network, f is usually known as the input, w as the
kernel and s as the feature map. Moreover, we often use convolutions on multiple axis
simultaneously. When considering a 2D image (input) for example, we typically want to
use a 2D kernel too. In this case we use a 2-dimensional version of equation 1.18 in which
we also leverage the convolution commutativity property (which comes handy in practical
implementations):

s(t)= (f ∗ w)(i, j) =
∑
m

∑
n

f(m,n)w(i−m, j − n) (1.19)

=
∑
m

∑
n

f(i−m, j − n)w(m,n).

While the previous one is the mathematical definition of convolution, in machine learning
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applications this term is often used to denote an other operation which is instead named
cross-correlation. The main difference between convolution and cross-correlation is that the
latter does not flip the kernel. Furthermore, as the name might suggest the cross-correlation
is a measure of similarity between two signals and is commonly used to search if a short
known signal is present into a longer one. Keeping this in mind, if we consider that kernels
- or filters - in a convolutional network are trained to recognize specific features into bigger
images then cross-correlation seems to be more adequate than the actual convolution.
Cross-correlation operation is defined by the star symbol ? and the formula for its discrete
2D version would then be:

s(t) = (f ? w)(i, j) =
∑
m

∑
n

f(i+m, j + n)w(m,n). (1.20)

In practice, a convolutional filter in a convolutional neural network is implemented by a
window (the kernel) - often a 3x3 square matrix in image related applications - which is
slided over the input. The values encountered in each step of the sliding are multiplied
by the corresponding ones in the kernel and summed together to form a new value. The
result of this operation is a set of feature maps (one for each convolutional filter) in which
every cell contains the result of one convolution. In Figure 1.10 it is shown an example of
the calculation. In the 2-dimensional case, we would have N x width x height feature maps
stacked together to form a 3-dimensional matrix which we call tensor. This tensor typically
contains a down-sampled version of the original input in which the features considered more
important by the network are condensed and carried towards the next layer.

Input Feature Map

3 5 2 8 1

9 7 5 4 3

2 0 6 1 6

6 3 7 9 2

1 4 9 5 1

7 6 1

-14 -10 0

-2 5 9

Output Feature Map

=

Convolutional Filter

-1 0 0

1 1 0

0 0 -1

x

Figure 1.10: Computation Example in a Convolutional Layer. The cells in the red bounding
box within the input feature map are multiplied by those contained in the convolutional
filter, the values are then summed and form the number 7 in the output feature map. The
rest of the output values are calculated in the same way by sliding the window horizontally
and vertically on the input map.

Research Restore and Deep Learning Re-Branding (1990 - 2006)

In these years, we assist to a general approach-shift, which passed from a knowledge driven,
where the “intelligence” came from hard coded knowledge, to a data driven one, where data
became itself the source for new knowledge.
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As for what concerns Neural Networks, research was still being carried out, but it was
reduced to very few survivors. ANNs were not achieving good results and in seemed
impossible to train deep multi-layer networks, whereas classical machine learning methods
kept on achieving better performance. In particular, a paper about soft-margin SVMs
(Support Vector Machines) - which are still a standard nowadays - was published in this
period [49] and reported very low error rates on the standard MNIST character recognition
dataset. SVM’s success and ANN’s continuos failures brought a depression period for the
field: papers about Neural Networks were being rejected continuosly by journals, grants
were nearly impossible to obtain and at some point it even started to not being consider a
Machine Leaning branch anymore.
This depression period lasted until 2006, when Geoffrey Hinton et al. [50] — who managed
to obtain fundings from the Canadian Institute for Advanced Research (CIFAR) — pub-
lished a breakthrough paper and coined the term “Deep Learning”. The term underlined
the possibility, given by the new weight initialization system they presented, of training
Deep networks in an effective manner. In particular, their solution was able to reach
state-of-the-art performance on MNIST dataset.
Although this publication is considered as the most important for research restore, what
made the difference was company’s renewed interest in the field. In particular Google, IBM
and Microsoft increased their investments in view of Deep Neural Networks being applied
to speech recognition tasks.

Deep Learning Revolution On Computer Vision Tasks: AlexNet
(2012)

Since 2006, research in deep learning field rocketed up. It is, however, not until 2012 that
the so-called Deep Learning Revolution took place, when one of Hinton’s PhD student —
Alex Krizhevsky — presented his solution to a computer vision challenge which involved
image recognition and classification: the ImageNet Large Scale Visual Recognition Chal-
lenge [51]. The solution presented by Krizhevsky consisted in a very deep convolutional
neural network which was called AlexNet [52] (after its inventor) and was able to achieve a
top-5 error of 15.3%, outperforming the second in ranking by over 10.8 percentage points.
This outbreaking result was made possible thanks to the advances in Nvidia’s GPU boards
and CUDA API, which were used by Krizhevsky et al. to optimize (and actually make
possible) the training speed of such a deep network (8 layers).
Although research in deep learning (DL) has extended to several other fields, most of its
application still regard computer vision tasks, in which it has established as a de-facto
standard by outperforming other classical approaches to the same problems. Nevertheless,
the relation between computer vision and DL is not unilateral: while DL is being employed
to solve classification, recognition, segmentation and other computer vision problems, sev-
eral computer vision methodologies are used to aid CNNs learning by preprocessing data
before feeding it in.
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Image Preprocessing and Data Augmentation

When properly used, image preprocessing techniques can sensibly enhance the performance
of a CNN (but also of other machine learning methods). Image processing is a sub-field
of computer vision which focuses on 2D images by transforming them into other slighly-
different ones. By applying some of these transformations to data samples before feeding
them to a convolutional neural network we can increase the range of “seen” images and
consequently enhance the network’s ability to generalize its representation for the various
class labels, as if more samples were provided in the first place: hence the term data
augmentation. Other usages of image (pre-)processing regard the manipulation of source
data to be considered as “original”: it is possible to extract objects from a wider image
or to simply mask some parts of it by means of filtering techniques. Some common image
processing techniques are hereby presented, while a visual example is provided in Figure
1.11

• Horizontal/Vertical Flipping. As the name suggests, it consists in applying a
vertical or horizontal “flip” to a 2D image, as if a mirror was put on a side or on top
of it.

• (Random) Cropping. Crops are selected from the original image in a random way.
This augmentation technique might be problematic since the crop might select an
area of the image which is not significant to the semantic meaning of the class it
should represent. It should therefore be used with care.

• Blurring. Many variants exists, such as GaussianBlur, LogaritmicBlur, LinearBlur,
however the outcome is conceptually the same: a blurred version of the original image.

• Noise Addition. Trasforming an image by applying some random noise results in
no changes for the human eye as long as the number of modified pixels remains low.
This, however, does change a lot for a CNN, which see the images in terms of pixel
values. In particular, recent studies report the vulnerability of deep learning-based
systems to image noise injection or information loss due to compression [53, 54, 55]
and report the regularizing effect of adding such noise during the training phase.

• Saturation Shifts. It consists in varying the saturation levels of an image so that the
resulting one would still look like the original one, but with different color intensities.

• Brightness Shifts. As the name suggests, light values in the image receive (random)
shifts.

• Geometrical Transformations. In general, an image might be rotated, inclined or
distorted: if these tranformations are not destructive, they are good candidates for
image augmentation.

The previous one was just a short list of possible image augmentation techniques, however
they are among the most used ones. Augmenting the dataset is a key strategy to use when
considering CNN training and, whenever possible, it should always be considered.
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Figure 1.11: Image Augmentation Examples. The presented images were obtained by
randomly applying multiple image transformations using ImgAug Python library [4]

ResNet and U-Net for Semantic Segmentation (2015)

ResNets [56] constitute one of the major advances in modern deep network architecture
design. The problem addressed by ResNet was that adding extra layers to CNNs often
resulted in a poorer outcome, which is somewhat counter-intuitive. As a matter of fact,
the inclusion of extra layers usually led to higher training errors due to several related
problems which restrained the network from converging. The solution proposed by He et
al. was to add shortcut connections between the layers: such shortcuts allow to combine
the input of one layer (i.e. tensors before they are processed) with its output [57]. In
this way the networks retains some of the original input features while allowing an easier
gradient flow during the backward pass. He et al. also address some architectural design
issues and propose the so-called bottleneck convolution setting.
During the same period, an other CNN architecture - the U-Net [13] - specializing in in
biomedical applications was developed. U-Net embeds an autoencoder structure, introduc-
ing an equal amount of down-sampling and up-sampling layers as well as the employment
of skip connections. In particular, U-Net was dedicated to a specific computer vision task:
Image Segmentation. Image segmentation is a technique used to understand what is inside
a given image on a pixel-wise level. It differs from image recognition or object detection
from the fact that the former assigns a label to the whole image, rather than to its pixels,
and the latter draws bounding boxes around each object. By means of image segmentation
we can decompose an image into meaningful parts and achieve more fine-grained under-
standing. Moreover, Image segmentation can be subdivided into two subtypes. Semantic
Segmentation consists in dividing an image into different regions by singularly classify-
ing each pixel as belonging to a certain class. Its concept is different to that of Instance
Segmentation, where objects are identified as single entities over than from the semantic
meaning they carry.
As for medical imaging analysis, semantic segmentation is particularly useful as a mean to
make localization easier or automated. The output of these kind of networks is typically a
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tensor matching the width and height of the original image and having N-classes channels,
where every channel reports the probability that each pixel has to belong to such class.
The final outcome, is a segmented image where each color corresponds to a different class
(Figure 1.12). Medical imaging analysis in not the only application field for semantic
segmentation. As a matter of fact, several efforts are being done into applying semantic
segmentation to autonomous driving cars or scene understanding, as in one of this work
topics (See Section 1.2).

Figure 1.12: Semantic Segmentation with Autoencoder Example [5]. The input images is
downsampled within the encoder and reconstructed when passing through the decoder.

1.2 Project Overview

In this chapter we will see an overview on the project this work belogns to. We will briefly
talk about the entities supporting this project and see how the workload was split in order
to achieve its specifications and goals. Finally, we will have a look at the equipment
involved in the data aquisition phase.

1.2.1 Stakeholders

The whole research project was born from the collaboration of three main stakeholders:
ReachU, Tallin Technical University (TalTech) and Archimedes Foundation. ReachU is a
company specializing in geographic information systems, carthography and location based
solutions for tourism, telecommunication services, security and smart cities. Archimedes
Fundation is an independent entity established by the Estonian government and is in charge
of imlementing and coordinating both national and internation projects in the fields of
education, training and research. TalTech University Software Sciences Institute is the
“performer” employing its research teams to carry out the development of new solutions
towards the achievement of the projects objectives.
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1.2.2 Description

In the last decade, spatial content market has not changed in its background. Most of data
management processes still employe an orthogonal photo base for data generation, verifi-
cation and usability. At the same time, the need for deatailed digital data has increased
several times. With this research project, the main target is to influence the whole spatial
data management process and produce a next-level 3D spatial base layer. In order to look
at the whole picture, the research will include all the steps involved in the spatial data
management process, i.e. data generation, processing and integration in a comprehensive
platform.
Formally, the project is entitled as “Applied Research for Cost-Effective Compatible Geode-
tic Accuracy 3D Spatial Data Infrastructure” and has the aim of exploring and building
a new infrastructure for spatial information to manage, standardize and integrate a wide
range of data from different sources, while maintaining a high level of data accuracy. More
specifically, the ultimate objective of the project is to create a Spatial Data Infrastructure
platform able to serve several different applications by means of an API system. The SDI
platform will provide 3D mappings of urban environments starting from multiple datasets
which include pictures shot by a 360° camera system (composed by 6 HD cameras), LIDAR
recordings and institutional databases. In order to achieve this, the project has been split
into 5 distinct subjects.

• The first subject is oriented to the creation of a point cloud image dataset. Each
of these images shall be classified and properly colored starting from data collected
with MMS (Mobile Mapping System) and UAV (Unmanned Aerial Vehicles) systems.
The whole process comprehends several sub-steps, among which the creation of an
automatization tool for the coloring and classification tasks.

• The second subject regards information extraction from othogonal, panoramic and
point cloud images. These images mostly contain road scenes in a rural (and some-
times urban) environment. The main interests would be object identification and
other road attributes such as traffic signs, road signs, road area and size.

• The third subject is based on the dataset produced whithin the first subject. Its
objective is that of creating varying-quality 3D urban models in an automatized way.

• The fourth subject will have as an output an integrated version of the first three
subjects outputs with external databases. Such databases originate from national
entities and contain topographic maps, zone maps, demographic maps and so on.

• The fifth and last subject aims to creating and describing an SDI platform with the
achieved results. Access will be made possible by a thoroughly documented REST
API system.

The whole project will have a three years duration, starting in April 2019 and ending in
April 2022.
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1.2.3 Data Aquisition Equipment

Most of the data used in the early stages of the project is directly collected by ReachU-
employees. To do so, Reach-U developed a Mobile Mapping System (MMS), consisting in
a car fleet (Figure 1.14) where each car is equipped with a LIDAR scanner, a 6-cameras
system and two GNSS systems with INS sensors wrapped in a single device. All the sensors
need to be mounted on a rigid frame composed by an iron rod having the camera system
on top, the LIDAR scanner halfway up and the GNSS/INS on the base (Figure 1.13).
Furthermore, these components need to be coordinated and time synchronized. An on-
board terminal is in charge of doing so by means of a synchronization software developed
by Regio/Reach-U; the whole process averagely generates 1TB of data each 100 km: each
car of the fleet is able to generate up to 3TB during a single working day. Data collected
in this way is already being used by the Estonian Road Administration by means of an
online tool named EyeVi.

Figure 1.13: EyeVi Data Collection Equipment.
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Figure 1.14: MMS Fleet. Data collection equipment is mounted and fixed on the car tops.

GNSS Positioning System The used Global Navigation Satellite System (GNSS) de-
vice model used for data collections is Advanced Navigation’s Spatial Dual (Figure ), which
mounts 2 GNSS receivers and offers 10cm positioning accuracy. Car orientation, tilting
angle and other information are given by a INS (Inertial Navigation System) sensor which
is combined with the GNSS.

Figure 1.15: Spatial Dual by Advance Navigation [6].

LIDAR system LIDAR — also known as “laser scanning” or “3D scanning” — stands
for LIght Detection And Ranging. This technology is widely used in the automotive in-
dustry, in UAV/MMS mapping, in robotics and other sectors, and makes use of eye-safe
laser beams to monitor the surrounding environment and recreate it in a digital 3D one.
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The device used in this case is the Velodyne VLP-16 sensor (Figure 1.16) which includes
two LIDAR systems capable of measuring up to 100 meters with an accuracy of ± 3 cm.
The scans are performed in a vertical field of view of 30 ° (+15° from a LIDAR system and
–15° from the other). For this reason, the device was mounted with an inclination with
respect to the horizontal line so that the most interesting part of the panorama, i.e. the
road surface and most of the buildings, was completely covered. Finally, the horizontal /
azimuth field of view covers 360 degrees, however the area covered has a blind point at the
180° angle which ranges by ± 5° given by the presence of the iron rod on which the system
is fixed.

Figure 1.16: Velodyne VLP-16 (“Puck”) LIDAR sensor [7].

Camera System The MMS employs Ladybug5+ as spherical imaging system (Figure
1.17). A 30 MP Resolution is achieved by the combined action of 6 high-sensitivity 5 Mp
CCD global shutter sensors (Sony IMX264). Covered view is the 90% of a sphere and
maximum height from the ground is 250 cm.
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Figure 1.17: Ladybug 5+ image from flir.com website [8].

Data Collection and Synchronization During data collection process, GNSS and INS
data are first combined in order to calculate the trajectory of the vehicle. This trajectory
contains the 3D coordinates of the platform and the orientation/attitude angles along
with timestamp and other supplementary information (e.g. velocity, acceleration, etc.).
Raw LIDAR data (i.e. thedistance to an object measured with laser beams and angles at
which the laser beam was sent out) is combined with GNSS/INS trajectory to calculate
a point cloud. Point cloud contains the 3D coordinates of each point and the intensity
value of surface reflectivity. Panoramic images are georeferenced with GNSS/INS data,
thus allowing the placement of panoramas in their correct place on a map and view 360°
images (by stitching them together). In Reach-U system, the panoramic images are also
projected to the ground to create an orthogonal image of the road surface, which can
be used to monitor and quantify defects on the road (e.g. pot holes, cracks, etc.) [58].
Camera and LIDAR data can be combined to create an RGB colored point cloud. For this
purpose, the images are projected to the point cloud and the corresponding color extracted.
Some software products able to do this exist, however it might prove difficult to integrate
them in the automatic workflow. For creating 3D models and matching different datasets
automatically, it will be necessary to detect, segment and classify objects (hence the topic
of this work).

1.2.4 Team and Objectives

Within the whole project, our research team was in charge of semantic segmentation of both
2D images and 3D point cloud ones. Moreover, the team was appointed the identification
of other road features, such as road width, road floor type and road signs. The workload
was further subdivided between the team members (initially composed by 5 researchers)
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for organizational purposes, such that the present work focus was set on pavement type
detection and on the initialization of a semantic segmentation system for road features.
In particular, our team mostly concentrated on the utilization of Deep Learning method-
ologies - which are at the base of most Artificial Intelligence applications - to achieve said
objectives, hence the name “Team AI”. With respect to semantic segmentation, the par-
ticular features of interest have been defined and changed during the setup phase, with a
consequent production of multiple datasets. In any case, the final concern regarded the
detection of poles, traffic signs and informational signs (Section 2.2.1).
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Chapter 2

Datasets

In the previous chapter we made an introduction and outlined a background for the topics
addressed in this thesis. In particular, we talked about the project it resides in and pre-
sented the objectives to fulfil which are that of providing a Deep Learning based solution
able to perform road surface type classification and that of setting up a research towards
semantic segmentation of road features from given road scenes(section 1.2.4). In order to
lay down a suitable work base, Reach-U provided a great amount of data collected from
different sources and stored in a shared online environment. Most of the times, however,
raw data cannot be used as is and an analytical process must be set up to extract the most
useful pieces, perform adjustments and organize them in a way suitable to be employed for
our Deep Learning solutions. Our starting point is always given by images, however the
creation of two different types of dataset will be covered. In particular, we will see how
the different nature of the objectives substantially influences the structure of the datasets,
which thus require the use of different construction methods.

2.1 An Image Classification Dataset

Among the provided data, we found a set of images - and related pieces of information - to
be particularly suited for the classification task. In particular, the following elements were
included:

• A set of images, referred to as orthoframes, that are constructed from panoramic
images collected from a drive, shot from the rear of the car. The orthoframes de-
pict the road and the surrounding area from a point of view orthogonal to the
ground (hence the name). The narrower the road the larger the surrounding area
and vice versa. For each orthoframe, an U-shaped mask has been supplied and
applied. The mask eliminates less relevant (unfocused, distorted) parts of the or-
thoframe image (Figure 2.1). The orthoframes are organized into directories named
in format yyyyMMdd_hhmmss_LD5 where the directory name indicates the start time
of the individual drive. One drive can contain involve cruisings on different roads.
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• Each othoframe is supplied with an accompanying VRT file. VRT files are used
within Geospatial Data Abstraction Library (GDAL) and are essentially XML files
containing metadata that describe various properties of the associated raster image.
For present case, VRT files provide the geolocation coordinates of the upper left
corner of the orthoframe as well as pixel dimension, making it possible to compute
exact geolocation coordinate for each pixel in the orthoframe, if necessary.

• Geolocations of the spots where the orthoframes were shot (camera point locations).
This information is contained in a set of files (locations.*) that can be parsed using
Python Shapefile library.

• Geolocations of the points that constitute the road lines as reported by the authorities.
This information is contained in similar shapefiles (roadlines.*) and, besides the
road line point coordinates, include the road ID, name and other attributes.

• Pavement type information (no pavement, gravel road, pavement road, stone mosaic
or unknown) is supplied with the road attribute file (road_attributes.tsv). This
file contains the road ID that can be associated with the one found in the roadline
files and road line segment beginning and end distances from the road line beginning
for which the pavement type is valid.

Figure 2.1: Orthoframe (left) and the corresponding orthoframe mask (right)

2.1.1 Data Association and Mask Production for Road Surface

The next step is to produce the masks to extract the part of the road that can be further
used for producing the valid image segments for CNN training. To ensure that the extracted
image area depicts the road surface and that we have identified a proper pavement type
from the records we must do the following:

• Select the camera points valid for current orthoframe. These points are directly used
for producing the proper mask later on.
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• Select the road ID, road line points and distances of each of these points from the
point of origin of the road line valid for selected set of camera points.

• Determine the pavement type valid for the current orthoframe and roadline (must
match the road ID) and roadline points distances determined above.

That of filtering the suitable camera points and roadline falling within the geolocational
boundaries of a given orthoframe might seem a straightforward task, however some com-
plications arise.

1. Road line points are available at uneven intervals, many of which are much longer
than the slice of road depicted in the given orthoframe. To provide a continuous road
line for the orthoframe, one needs to insert additional road line points at the edges
of the orthoframe. These additional points are obtained by interpolating from the
closest existing road line points outside ofthoframe boundaries. This is accomplished
with the clipLine function of openCV. Of three road line points depicted in Figure
2.2, only the one at 344.87m, is obtained from the road line shapefile, the other two
at the edges of the image are the inserted ones. The distance from the origin of the
road line, however, is calculated cumulatively for each road line point, original or not.

Figure 2.2: Road line alone (left) and road line with the camera points (right) valid for
the given orthoframe. This is the simplest case with one road line and one set of camera
points.

2. Not all pictured roads have a corresponding road line (at least not in the available
shape file). In this case, the road attributes cannot be determined at all.

3. Camera points occur at approximately 3m intervals, thus it is highly probable that
there is a number of camera points within the orthoframe. However, two artificial
camera points are inserted at the edges of the orthoframe; the same way as the
additional road line points were added.

4. There might be camera points originating from different drives (at crossing roads or
because of repeated drives on the same roads; this more likely to happen on wider
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roads). The camera points do not have a drive ID but they do have an ordering
that makes it possible to split the camera points into sequences that originate from
different drives and then identify and select the sequence that has a camera point
nearest to the orthoframe center (the camera point where the given orthoframe was
actually shot).

5. Similarly, there might be several roadlines in the same orthoframe (at crossings or just
close roads), therefore, it is important to select the appropriate road line otherwise
the road attributes will be improperly defined. If there is more than one road line
that intersects the orthoframe, we need to find out which one of those was supposedly
followed during the drive. We already have determined a set of camera points that
is valid for the current orthoframe. Next we use a subset of them that fall within
the orthoframe mask. Given this subset of camera points we browse through all road
lines that intersect the orthoframe. For each camera point and the given road line,
we choose two closest road line points to the camera point (Figure 2.3). Those three
points form a triangle with sides a, b, c. Note that the closest pair of road line points
is those for which angles A and B of the triangle do not exceed 90 degrees.

Figure 2.3: Determining the distance h between the camera point and two closest road line
points

The distance of the camera point from the road line is given by

h =

√
b−

(
b2 + c2 − a2

2c

)2
.

Each road line can then be characterized by the averaged value of h computed over the
valid set of camera points inside the orthoframe mask and most likely, the appropriate road
line for the orthoframe is the one which provides the lowest value of this measure. Once
all of the above is sorted out, a mask depicting the definite extract of the road pavement
with a valid pavement type can be produced. The eventual mask is obtained by drawing
a 500 pixel wide line (that corresponds to the width of the car) over the selected camera
points. Figure 2.4 shows one such example and the produced mask.
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Figure 2.4: There are 5 different road lines and camera points originating from 4 individual
drives within the boundaries of this particular orthoframe (left). The relevant camera
points are associated with the appropriate road line so the correct pavement type can be
identified and the pavement mask (right) is correctly produced.

2.1.2 Dataset Construction

Most of the orthoframes collected for this study, incidentally, represent gravel roads (62.20%),
followed by paved roads (~33%). Unpaved roads are represented on 4.42% of the or-
thoframes, whereas the remaining two classes make up mere 0.39% (Figure 2.5).

Figure 2.5: Class Distribution. Paved Road and Gravel Road images are preponderant.
Unpaved road, Cobblestone road and Mosaic road images are respectively one, two and
three orders of magnitude less with respect to the previous two ones.

The very unbalanced class distribution is addressed by leaving the cobblestone and mosaic
roads out from the scope of the classification problem, the road surface segments are
extracted only for first three classes in Figure 2.5. To produce the training and testing
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samples for the CNN, we calculate all possible extractable segments from the masked
area using the previously produced pavement masks. The coordinates of the segments are
retrieved so that each segment overlaps with its neighbours by half of its own size. Segments
that would contain more than 1% of black pixels (i.e. RGB(0, 0, 0)) are discarded. This
is a rather costly operation as on average, it takes 1.35 seconds per orthoframe. We have
set the segment size to 128x128 pixels. The smaller segment size allows us to obtain more
samples from each image, while keeping each samples weight low in terms of memory.
Larger segment sizes lead to fewer samples, that would intensify the problems with poorly
represented classes. An example of calculated segments is shown in Figure 2.6.

Figure 2.6: Segment Extraction Example. Green boxes represent valid segments, while the
red one is an invalid segment that will be discarded.

In result, 10 000 segments for the least represented class – Unpaved Road – can be easily
collected. It is also a sufficiently high number, so 104 is the limit of extractable segments
for all classes. In order to promote the use of a wider range of images, we set a limit of 5
segments to be extracted from each image so the final dataset contains 30k samples equally
distributed between Paved, Gravel and Unpaved Road classes. The last step is to split the
overall dataset into training and validation datasets with 75%/25% ratio. The sample
selection is image-based. This means that in order to decide which segments should be
inserted in the training set and which should be in the validation one, we first retrieve all
the original images from which the segments were extracted, shuffle the list and randomly
select 75% of images. All the segments extracted from these images will be assigned to
the training set, while the remaining ones go to the validation set. The reason behind
this is that a totally random split into training and validation samples might bias the
network towards a certain prediction. If during the training phase, the network processes
the segments that originate from the same orthoframe than the validation samples and
possibly even overlap with the validation samples, the validation segments would be too
familiar to the network. The resulting dataset is named the primary dataset not to confuse
this with other datasets we produce later on. One specific characteristic of the orthoframes
is that segments further away from the centre of the image appear less focused, an example
of such difference is provided in Figure 2.7. To find out if sharpness of a segment has any

46



2 – Datasets

effect on pavement detection quality, valid segments are sorted by Euclidean distance from
the central point of the image, either in increasing or decreasing order, thus making it
possible to simply select the first N (=5) ones. In case of mixed selection, the list is shuffled
rather than sorted. Consequently, we obtain further three different datasets, which we call:
• Blurry dataset, containing far-from-the-centre segments
• Sharp dataset, with close-to-the-centre segments
• Mixed dataset, with randomly selected segments

Figure 2.7: Extracted Segments Example. The road segment on the left taken from the
edge of the image is blurrier than the one on the right taken from the centre.

2.2 Semantic Segmentation Datasets

Our second task consists in performing semantic segmentation on road scene. To accom-
plish this task, we select a set of images originally collected by means of a spherical imaging
system (Ladybug 5+), which provides 6 different panoramic images from the same scene,
one per direction: up, down, left, right, front, back. Images orientated upwards show sky
only, while those orientated downwards show almost only the car itself. Left and right
oriented images do provide more informative scenes, but still not interesting for our work
case. We finally select front and back oriented images, both depicting a road scene but pro-
viding different information since elements on the road (such as traffic signs) are presented
from multiple perspectives and points of view.

2.2.1 Dataset Construction

Since we are in a supervised learning setup, out first need is to generate a label for each
image in the dataset. In a normal image classification problem, where the aim is to assign
a class from a given set to an image, a label is simply the name of the class which is
representative of the image content. In our case we need to perform semantic segmentation
over one image, which requires to have a label for every pixel contained in such an image.
As a matter of fact, a label for an image to be semantically segmented is an image itself
where every pixel is assigned to a specific value which is mapped to a given class. We call
these label images masks or ground truth (GT) images. As a first attempt, we decide to
build a simple two-classes problem by creating masks for 32 images. Ground Truth images
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are produced by using a graphics software and dividing asphalt (white) from background
(black), then they are divided into train and validation set. As a result, we obtain a very
small and simple dataset which was used in the early steps of the development of a solution
and as a proof of concept.

Figure 2.8: Road image (left) with its corresponding Ground Truth (right)

Further research brought to the discovery of so-called annotation tools which allow pixel
annotation of images in a comfortable way. While several tools were available, we opted at
last for Intel open source Computer Vision Annotation Tool (CVAT) [59] which provides a
web-based interactive annotation system under MIT licence. As a next step, we decide the
set of interest classes to be segmented by the network At first, the classes of interest are
stated to be 7: road surface, road markings, curbs, cars; anything falling out of the interest
area was agreed to be classified as background; as a result we have 7 distinct classes in
total.
Along with the classes, we decide on pixel annotation guidelines to be followed while
labelling images. Such guidelines are needed in order to ensure that different people per-
forming the annotation would use the same criteria while labelling objects on the images
and that the labelling style would as consistent as possible throughout the dataset, since
it may vary from one to another [60]. The guidelines state that the operator should, using
CVAT tool, zoom into the image 4 times while annotating pixels. Any object which is easily
recognizable within this zoom amount should be annotated with one of the classes of inter-
est. With easily, we mean that the object edges should not in any case be indistinguishable
by whatever other object is surrounding it. Furthermore, any object appearing on the
image borders should be annotated as belonging to one class only if it is unmistakeably
distinguishable by the human operator.
Provided panoramic images have 4096x4096 resolution, which is very high when thinking
that these should be provided as input to our networks. Moreover, the topmost part of the
images mostly contain sky or other objects such as houses which we consider background
information; because of this we decide to crop the images by half over the horizontal line,
thus keeping the bottom part only. As a result, we obtain reduced size and easier to
annotate images (Figure 2.9) in what we refer to as road dataset.
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Figure 2.9: Image (left) and its correspondent Ground Truth (right). The topmost part of
the original version has been cut out, making it result in a rectangular shaped image.

Due to interest changes, we later decide to reduce the classes to two, being them traffic
poles and traffic signs. By counting the background, the total number of classes is now
three. We keep the same annotation guidelines as for the previous dataset, however, in
order to introduce further clarity, we define traffic poles in the following way:

• A traffic pole is a 4 to 16 meters high pole

• Traffic poles include streetlights, electricity poles and flag posts

• Traffic poles do not include traffic lights

We are gonna refer to this as pole dataset.
Finally, we consider a background-only image as not containing enough information, there-
fore we decide to discard any image which does not have at least one object different than
background. This reduces the total dataset size by ~4.7%. An example of how images and
ground truths appear in this dataset is provided in Figure 2.10.

Figure 2.10: Second - and final - dataset example. Differently from the previous case,
images in this dataset have kept their original resolution. Labelled objects in the GT
(right) also differ. Note that the traffic lights are not considered part of the traffic pole.

Being a very long and time-consuming process, two persons were hired by the company to
perform the actual annotation process, hence allowing a parallel research and development
of an appropriate CNN. At the end of the annotation process, we obtain 220 images for
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the former set of classes and 3482 for the latter set of classes. We collect working statistics
over the second annotation process, which are reported in Table 2.1

Table 2.1: Image Annotation Statistics. The whole annotation process required ~39 work-
ing days.

Operator Number Processed Images Total Working Hours Images/Hour rate Images/Day rate

1 1336 112 11.93 ~95 (95.44)
2 2274 197 11.57 ~92 (92.56)

2.2.2 Berkeley Dataset

Given the need to test our network architectures, we firstly use our two-labels dataset.
However, we soon discover the need for a more realistic, multi-label dataset which allows to
infer better conclusions on our network performances. While several semantic segmentation
datasets exist, many of them refer to different fields with respect to our work case. Although
this might not be an issue for network testing and benchmark evaluation purposes, we
choose to rely on a related field dataset. Among the existing ones, perhaps the most
popular is CityScapes [61] followed by Camvid [60] and KITTI [62], however we finally opt
for Berkeley DeepDrive100k (bdd100k) [17] dataset as our reference. BDD100k not only
provides a large, diverse benchmark on which to train and test our networks, but also a good
example to refer to when deciding the annotation guidelines for the pixel annotation team.
Images contained in BDD100k cover several different scenarios and weather conditions
along with being classified into 37 different classes: this provides a big challenge for our
network, which, by achieving a good performance here, might end up having a better
performance on the possibly easier future dataset.

2.2.3 Data Generator and One-Hot Encoding

A proper training of a DeepCNN requires a huge amount of data which needs to be fed to
the network. Loading so many samples into memory is by far unfeasible and modern CNNs
use mini-batches containing a fraction of them instead. Keras framework provides a useful
tool wrapped in a class named Data Generator to enable loading batches of images directly
from the directory to the network. In order to grant a correct flow of samples with the
corresponding label, source data needs to be organised into a set of folders such that each
folder contains only samples belonging to the same class. While this is straightforward in
image classification it is not feasible for semantic segmentation.
As previously mentioned in Section 2.2.1 for our task the class is represented by a distinct
image (not a simple name) where each pixel is colored with a value determining the class
it belongs to: obviously, this file needs to be carried along with the corresponding image
when being fed to the network so to provide a ground truth to compare the prediction to.
For this reason, we implement an ad-hoc Data Generator able to serve our segmentation
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task by providing both the image and its GT. What’s more, the output of a network is a
belief map in which a separate channel containing probability values between 0 and 1 for
every pixel is present for each class. This means that the GT cannot be used as is, but
needs to go through a transformation process called “One-hot encoding”.
If n_classes defines the number of classes in the classification task, by means of this
process we obtain n_classes-tensors from the 3-channels ground truths (Figure 2.11).
Finally, in order to reduce the latency introduced by image retrieval and one-hot encoding,
we implement a multi process system within the Data Generator which allows us to achieve
up to 9x speed improvement with respect to its single-process version. Moreover, in order
to avoid having the network learn unwanted sequences in data, we implement an Index
Pool class shared among different processes and accessed in a mutual exclusion regime.
The Index Pool prepares a shuffled list of indexes and returns N = batch_size of them in
a sequence. Whenever the end is reached, the list is shuffled again.
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Figure 2.11: One-Hot Encoding Example. Each label has a dedicate channel where the
cell corresponding to the sample is set to 1 if belonging to such class. 0 otherwise.
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Chapter 3

Methodology

3.1 Semantic Segmentation Task

Several different convolutional neural network (CNN) architectures exist with respect to
semantic segmentation. State of the art solutions are reported to score over 83% mean IoU
(Intersection over Union) [63] on Cityscape and new solutions are researched continuously.
We explore this subfield of Deep Learning by trying our own implementations and testing
out methodologies taken from the literature.

A First Approach

In our first setup, we build a simple autoencoder network. An autoencoder consists in two
macro modules, the first an encoder which learns a representation of the input data and
possibly reduces its resolution at each step, the second a decoder which tries to reconstruct
the image starting from the encoder output, i.e. from the data representation. In this first
solution, the encoder is a VGG16-like network [64] which learns data representation and
reduces its resolution to to 8x8. Note that the final fully connected layer has been removed
from the original VGG16 architecture: by doing this we avoid the resolution from being
further reduced, while at the same time we drastically decrease the amount of trainable
parameters.
The decoder part consists in a series of blocks containing a first non-trainable up-sampling
layer, followed by 3 or 2 convolutional layers which attempt to improve the up-sampling
performed by the previous layer, without decreasing the feature maps resolution.
All the convolutional layers in the network use a 3x3 kernel and are followed by a batch
normalization layer and a ReLU activation function; the only exception is the last convo-
lutional layer, which is a 1x1 convolution with N-labels feature maps as an output which
are then flattened and reshaped to obtain a 2D map with size width×height×N − labels.
This final layer is followed by a softmax activation function for prediction.
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At this point, the network output consists of width × height prediction maps having size
N-labels. Each map reports, for each pixel (which are now flattened on each channel), the
probability of belonging to ith class as predicted by the network.
Finally, we use pixel-wise cross-entropy as the loss function by comparing the network
prediction and the one-hot encoding of the ground truths:

L(θ) = − 1
N

N∑
i=0

M∑
c=0

yi,c ln(pi,c).

Dilated Residual Network

According to [17], Dilated Residual Networks (DRN) [65] perform well on Cityscapes
dataset, which is very similar to our work case. DRNs idea is based on preserving spatial
resolution within a convolutional network. The reason behind this idea is that, despite
providing a progressively increasing receptive field, image down-sampling causes the loss of
spatial information which would instead be useful to achieve more accurate image classifi-
cation and detailed scene understanding. Whenever the foreground object is not spatially
dominant, such loss becomes extremely significant. In our segmentation task we need to
segment varying size objects where road labelled pixels typically occupy most of the space
in the image, whereas road markings, curbs or traffic lights are usually shaped in thin lines
and occupy smaller areas. These considerations lead us to try out DRNs architectures, in
particular we adopt its C-26 implementation.
DRN architecture code is provided under BSD-3 licence, however such code uses PyTorch
framework therefore some adjustments and transposition are required before starting the
actual experiments. Furthermore, the provided implementation of the DRN outputs feature
maps with an incompatible size with respect to our ground truths. To overcome this issue,
we design and append a decoder part to the original architecture so to perform the up-
sampling of the encoder predicted output and match the initial input size. We design the
decoding unit so that each up-sampling layer is followed by a pair of Conv3x3+BN+Relu
block in charge of improving the reconstruction quality without decreasing its resolution.
What’s more, we implement skip connections between each block in the contracting part
(decoder) and their correspondent in the expansion one (encoder) as described in [66]. The
feature maps carried along these links are added to the up-scaled ones in order to help the
original image reconstruction by retaining some of its features. Such addition is not always
straight forward since residual units might have a different – typically smaller – resolution
with respect to their up-sampled counterparts. The reason behind this phenomenon is
that, when downsampling the input feature maps, convolutional layers tend to round up
the resulting size to the closest integer. For instance, an image with size 225x225 would
be downsampled to ceil(225/2) = ceil(112.5) = 113x113 when going through the encoder.
When performing the up-sampling, the reconstructed resolution would thus be 226x226:
this means that if we want to add the residual 225x225 feature map, we will face an
inconsistency. Therefore, residual feature maps are adjusted by means of zero padding
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on the top and on the right sides so to match the up-sampled features. After addition is
performed, a cropping layer restores the original residual feature map resolution (Figure
3.1).
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Figure 3.1: Residual Addition During Up-Sampling Phase. The residual (above) feature
maps get zero padded before addition with the up-sampled (below) ones. The result is
then cropped to the correct size.

Atrous Convolutions and Pyramidal Block

In order to explore other solutions and meet hardware constraints problems, we design a
new, lightweight, segmentation network. In particular, our attention goes towards Atrous
or dilated convolutions, which have recently been the subject of various researches and have
been adopted in some of the newest architectures thanks to their properties. Among these,
the aforementioned and tested DRN makes an extensive use of dilated convolutions inside
of its down-sampling blocks as a mean to obtain a higher receptive field while preserving
more spatial features with respect to the non-dilated counterpart. Other state-of-the-art
networks like the one described in [67] make use of atrous convolutions both in parallel
and cascade to handle multi-scale objects and to capture further contextual interactions,
which have been proven to be beneficial when performing semantic segmentation on an
image pixels [68,69,70].
In our setting, we design a basic block which exploits 3 parallel convolutions each with a
different dilation rate (Figure 3.2). All of these convolutions use a 3x3 kernel to parse the
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input feature maps and are followed by a Batch Normalization layer and a ReLU activation
function. By using three different dilation rates, namely 1, 2 and 3, we want to be able to
catch at the same time several contextual properties that each single pixel might be linked
to. The resulting feature maps are then concatenated and passed forward to the next block
in a cascade.
The idea is that at every pass a wider range of information (represented by the stack of
concatenated layers from three differently dilated convolutions) is submitted to the next
block. The block will then select, among these, the most relevant features, which might
be given by context information (higher dilation) or by immediate interactions (lower
dilation). We call this module Pyramidal Block because of the visual concept of these
three differently dilated kernels and PyramidalNets the networks derived by the usage of
this basic block.
To be concrete, we alternate blocks with stride 1, which preserve spatial acuity, and blocks
with stride 2, which down-scale the feature maps by a factor of 2 on each dimension. At
any down-scaling, we double the number or feature maps outputted by the convolutional
layers in the block, in accordance to [56]. In order to avoid gridding artefacts experienced
by Yu et al. [65], we adopt similar practices and append 2 convolutional layers at the end
of the pyramidal blocks chain. As part of the artefact’s avoidance, we do not use skip
connections for these last layers as they might carry some of them along.
For what concerns the deconvolutional part of the architecture, we use a series of blocks
which reconstruct the original resolution by doubling the size of each dimension at each
step. A reconstruction block is composed of a first up-sampling layer followed by two
convolutions. The up-sampling layer basically inserts a blank column and row between
the input ones and applies an interpolation technique in order to fill the blanks in an
appropriate way. In particular, we use a combination of nearest neighbour and bilinear
interpolation. Convolutions within the decoding unit have the role of optimizing the up-
sampling quality without reducing the feature map size. Each convolution is followed by BN
and a ReLU activation function. Moreover, following the scheme described in Figure 3.1, we
also add residual features at the end of each block. Finally, if n_classes is the number of
target classes in the segmentation scope, class prediction is enabled by a last convolutional
layer with n_classes feature maps as output and softmax activation function. We do not
use any post-processing block such as DenseCRF to refine the segmentation quality.
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Convolutions 3x3

Dilation rate 1 Dilation rate 2 Dilation rate 3

Concatenate

Figure 3.2: Pyramidal Block Concept. The same input feature map passes through three
convolutions with differently dilated kernels at the same time. In each of the passes, the
feature map reports a wider context information with respect to the same pixel, so that
when they are concatenated the effect is that of a pyramidal point of view.

Experimental Results

Following company’s needs and data availability, we run several experiments on different
datasets in order to estimate our solutions’ performances. Our first network is to be
considered as a first approach to the field, aimed to better understand the requirements to
build a functioning segmentation network, in particular the encoder-decoder pattern. The
DRN and the PyramidalNet instead represent a more aimed effort towards a solution able
to fulfill our requirements.
We train and evaluate all the CNNs on our firsthand-made dataset containing two classes.
We use Stochastic Gradient Descent (SGD) optimization with LR = 0.001, momentum =
0.9 and decay = 0.0005 to update weights. We use our first dataset, which contains 24
training samples and 8 validation ones, to train the network on mini batches 5 images each
for 50 epochs. To enhance the training, we use data augmentation techniques like horizontal
flipping and rotation. The difference in the learnt representation among the different
architectures is striking, especially between our first-attempt network and the other two
(Figure 3.3). Although the first CNN seems to identify the main area in which the road is
located, it fails to define a precise shape. As a matter of fact, the boundaries themselves
are rough and characterized by a set of straight horizontal lines which overlap with the
sorrounding vegetation. Such poor understanding of the scene is to be attributed to the
network design, given the simplicity of the presented dataset. DRN and PyramidalNet,
on the other hand, successfully draw a shape around the road area which, although not
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smooth in its outline, also covers the farthest details in the image.

(a) (b) (c)

(d) (e)

Figure 3.3: Segmentation Results our Firsthand Dataset. The original image (a), its ground
truth (b) and segmentation results from the three different networks, respectively from the
first CNN (c), from DRN (d) and from PyramidalNet (e).

Results obtained on the firsthand dataset, however, are not representative and serve as
a first example of how our networks behave on the segmentation task only. In fact, such
dataset is too small - both in terms of classes and samples - and too restricted in its depicted
scenarios. For this reason, we test the CNNs on the previously mentioned BDD100k dataset
(see Section 2.2.2). BDD100k provides a wider range of scenarios, which are present in a
higher number of samples and with a higher number of classes, hence the need to perform
some adjustments on the hyperparameters. In particular, we define a stepped Learning
Rate (LR) schedule for the SGD optimizer: in this setup, the LR is initialized to a larger
(0.1) value and decreased with step 10−1 up to reaching 10−5 as the epochs pass. In this
way, we impose more aggressive updates in the earlier phases, whereas lighter updates
guarantee slight refinements in the later ones. As for batch size, we experience tuning
issues given by the fact that images coming from BDD100k dataset have a greater size in
terms of memory with respect to our previous scenario. As a matter of fact, using a batch
size greater than one with full size images would cause an out of memory error on our gpu,
thus forcing us to use 1 as a batch size. To overcome this issue, we etablish a customized
optimizer which allows gradient accumulation. We also try image resizing which results in
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quality loss (Figure 3.4), however this allows us to use a bigger batch size therefore we test
with this setting as well.

(a)

(b)

Figure 3.4: Image Resizing Example. On the left, some details extracted from the original
image. On the right, the corresponding in the resized one: in these examples, line distortion
produces fan-shaped artefacts.

Since the first of our datasets described in 2.2.1 contains a considerably lower amount
of images with respect to BDD100k, we randomly select a subset of the latter and train
DRN and PyramidalNet on this reduced version (which contains ~250 images splitted in
train and validation). The results obtained with DRN lack in being precise (Figure 3.5c),
however it still seems to identify the major objects and to classify them properly. Although
missing thinner objects and still providing a slightly rough segmentation, PyramidalNet
outperforms its counterpart and returns a nearly perfect segmentation (Figure 3.5d). It is
to be noticed that in this case we use reduced-size images and batch size 2 instead of 1,
however the achieved results are extremely promising.
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(a) (b)

(c) (d)

Figure 3.5: Reduced BDD100k Segmentation Output Example. The original image (a),
its ground truth (b), prediction output from DRN (c) and from PyramidalNet (d) are
reported.

The previous experiment contained just a small subset of the whole possible samples pro-
vided by BDD100k and was slightly biased towards certain types of scenarios. We therefore
try to experiment training on th whole dataset, which contains 7000 images. In this case,
segmentation obtained by both DRN and PyramidalNet are not satisfactory. When trained
with batch size 1, DRN segments almost everything as sky (Figure 3.6c), which is one of
the most recurring pixel labels. When the same is trained using a gradient accumulation
factor equal to 32 it seems to be learning a wider range of possible labels, even though
they are still applied in a rather confusing way and the most frequent ones are still being
favorited over the others (Figure 3.6d). We try image resizing and a bigger batch size (8) to
train PyramidalNet (Figure 3.6f). Also in this case however, segmentation quality is very
poor and road class (violet color) - which is one of the most recurring ones - is favorited at
the expenses of other less reccuring labels. We finally test PyramidalNet on full size images
using an accumulation factor equal to 16 and train the network for 20 epochs (previous
trainings were run for 100 epochs). Again, semantic segmentation does not provide any
reliable result.
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Segmentation results on BDD100k dataset for DRN and Pyramidal Network

Although results obtained on the the totality of BDD100k samples are not encouraging
from a semantic segmentation quality point of view, those obtained from its reduced version
seem to be a promise towards a good performance on easier datasets. It is also interesting
to notice PyramidalNet tendency to faithfully segment elements’ shapes (Figure 3.6e). Be-
cause of these considerations, we test PyramidalNets on the datasets mentioned in section
2.2.1, which might indeed be considered as simpler challenges with respect to BDD100k.
Firstly, we train the network using the road dataset, which contains labels such as road,
road markings, cars, curbs and so on. As previously mentioned, this dataset is not con-
siderably large and its upper part has been cut due to containing “not interesting” pieces
of information. We set batch size 2 and half input resolution; usual image augmentation
techniques are also used. On such set, our network performance reaches high values both
in terms of precision (94%) and mean IoU (83%), however the predominance of road and
road marking labels strongly affect the overal prediction and overwhelm other less recur-
ring ones like curbs. In Figure 3.7 we provide an output example, here the original ground
truth contained some noise too (imprecise labelling).

(a) (b) (c)

Figure 3.7: Segmention Example Results on Reach-U Road Dataset.

Secondly, we train our network on the second dataset - the pole dataset - mentioned in
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section 2.2.1. In this dataset, poles, traffic signs and info signs are labelled as ground
truths, while all the rest is considered background. Given the thin nature of such objects,
this dataset is extremely imbalanced and background information predominance forces us
to adopt some weight regularization. In particular, we implement a weighted version of
the cross-entropy loss function and use it to perform several experiments. Performance is
in this case poorer with respect to the road dataset, however the network still confirms its
tendecy to isolate objects’ shapes.

(a) (b)

(c) (d) (e)

Figure 3.8: Segmentation Example Results on Reach-U Pole Dataset. Subfigure a and
b are original and ground truth images respectively. The remaining ones represent some
experimental results. In particular, figure c is the output of a network trained with slight
loss weighting: although the prediction is incorrect, labels are all being used (instead of
having a complete background predction). In figure d and e we experiment heavy weighting
on labels “traffic sign” (red) and “info sign” (blue) given that they are the least recurring
ones. Such a heavy weighting has the result of nullifying background information, which
was supposedely several orders of magnitude more present.

We finally report some training values in numerical terms in Tables 3.1 and 3.2. We

62



3 – Methodology

evaluate our first experiments using a standard accuracy metric

TP

TP + TN
,

this however turns out to be imprecise when applied to segmentation tasks, especially
when label distribution is imbalanced. For example, consider a black image with a single
white pixel in its centre. If the segmentation output is a completely black image, accuracy
measure would return 99.9% which is incorrect, given that the only informational point
has been misclassified. Other types of measure such as precision and recall provide a more
accurate estimate of the network performance and, for this reason, have been used in 3.2.
Nontheless, for segmentation tasks Dice coefficient - or F1 score - and IoU (Intersection
over Union) measure, both relying on the calculation of the area of intersection between
the ground truth and the segmentation output, are more suitable. In our case we go for F1
score in our later experiments, however both methods are valid. In particular, we calculate
the mean F1, which takes into account each label individually and then reports the average
score: this provides even more accurate estimates since an overall version of the F1 would
still be influenced by class imbalances.

Table 3.1: Training Results for Discusses Networks on BDD100k Datasets. Although
accuracy reports fairly high values, actual segmentation results in poor quality. Mean
F1 score (calculated on each label and averaged) reports this performance drop more
accurately.

Network Configuration Dataset Epochs Batch Size Val. Accuracy (%) Mean F1 score (%)

DRN BDD100k Reduced 100 1 75.25 -
PyramidalNet BDD100k Reduced 100 2 82.81 73.40

DRN BDD100k 100 1 75.74 -
DRN, Cumulative Gradient (32) BDD100k 100 1 75.25 -

PyramidalNet BDD100k 100 8 79.14 38.40
PyramidalNet, Cumulative Gradient (16) BDD100k 20 1 71.53 34.22

Table 3.2: Training Results for Discussed Networks on our Datasets. Once again, accuracy
measure is unreliable: most of the pixels in pole dataset are background and the network
mostly labels them in this way: this keeps the overall accuracy measure high. It is in-
teresting to see how mean F1 score on road dataset is doubled even though accuracy is
lower.

Network Configuration Dataset Loss Weights Batch Size Val. Accuracy (%) Mean F1 score (%)

PyramidalNet Road Dataset None 4 93.96 83.02
PyramidalNet Pole Dataset Slight on all labels 2 99.53 46.25
PyramidalNet Pole Dataset Heavy on Traffic signs 2 99.48 41.09
PyramidalNet Pole Dataset Heavy of Traffic and Info signs 2 99.43 38.67
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3.1.1 Conclusions

We set up a research base for semantic segmentation tasks. Our studies brought us to the
testing and development of three different typologies of CNN architectures, all based on
the autoencoder pattern but having a different design. Our first implementation consisted
in a naïve approach to the problem and helped us moving the first steps towards this
computer vision field. We secondly test Dilated Residual Networks, which employ dilated
convolutions to improve output resolution without losing receptive field. In particular, we
adopt DRN C-26 as described in [65] and customize it by appending a decoder composed
of up-sampling and convolutional layers to improve reconstruction quality. Moreover, re-
cent state-of-the-art implementations make extensive use of dilated convolutions in their
architectures. Because of this consideration an of the accuracy levels obtained by DRN
on our firsthand-made dataset and on a reduced version of BDD100k, we are induced to
develop our own network employing dilated convolution as part of its building blocks, thus
giving life to what we refer to as PyramidalNets. Due to out of memory issues experienced
during previous testing with DRNs, our PyramidalNets are designed to not be the cause
of too high loads on GPU memory.
Results obtained by the application of PyramidalNets to the different datasets reveal a
tendency towards faithfully identifying shapes that outline object contours inside images.
Even though the overall segmentation is inaccurate on more challenging tasks, this ap-
proach seems to have promising potential and will therefore be further investigated. A
possible research direction might be that of increasing the network depth. In particular,
deeper architectures employing Pyramidal blocks will be evaluated upon the arrival of new
hardware capable of bearing them, whereas other training strategies employing adaptive
learning rate optimizers will be subject of testing in the near future.
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3.2 Image Classification Task

As previously mentioned, one of the objectives required by the project regards Image
Classification. More specifically, we are requested to implement a method able to perform
road type classification where the classes of interest are Paved road, Unpaved road, Gravel
road, Cobblestone road and Mosaic Road. Furthermore, we develop a simple application
providing a Graphical User Interface (GUI) to road type prediction.

3.2.1 Deep Learning Methods

State-of-the-art networks in image classification are able to obtain over 85% top-1 accuracy
and over 97% top-5 accuracy on ImageNet dataset. These architectures, however, account
for an extremely large number of classes (ImageNet counts 20000+ classes) of which they
are required to learn the most important features in order to make a precise prediction.
This often translates into extremely deep networks counting over 80 million parameters
to train, which requires a big amount of GPU memory and computational time; some
architectures involve several parallel networks performing independent predictions, which
are then used to perform an election to decide which label is most likely to be true. In
present case, our focus is limited to three labels and our final prediction embeds, we will
see, an election-like system by itself. These considerations and further limitations imposed
by the hardware, brought us to research simpler and lighter solutions in terms of memory
usage, without, however, ignoring existing more complicated solutions.

Building a Convolutional Neural Network from scratch

As a first approach to the classification problem, we design a convolutional neural network
(CNN) suitable for the task at hand. We proceed with a description of its main features and
the analysis of its performance on the primary dataset. We then consider other datasets
and perform further analysis.

Custom Network We first consider a small, simple convolutional neural network (CNN)
composed by a series of convolutional layers, 8 in total. Each layer consists of a 3x3 kernel,
is followed by a Batch Normalization (BN) layer [71] and a Leaky ReLU activation function.
Downsampling is performed directly using the convolutional filters themselves by applying
a stride of 2, the only exception is the first resolution reduction which is achieved by a
max pooling with kernel 3x3 and stride 2. By the end of the convolutional stack, input
resolution is reduced by a factor of 16, going from 128x128 to 8x8. This is followed by
a pair of Fully Connected (FC) layers separated by a Dropout [72] layer. The first FC
consists of 512 neurons and makes the transition from the last convolutional layer to the
final predicting FC of 3 neurons smoother. All the layers in the network are initialized
using the “standard” initialization technique described in [73]. As a result, we obtain a
fairly shallow CNN with ~9.5M parameters which can easily fit in GPU memory.
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We train all the layers of the network from scratch for 100 epochs on the whole training
set with a batch size of 32 and backpropagate the cross-entropy loss calculated on the
network’s output. Learning rate is scheduled to be higher in the early steps of the training
(0.1) and to slowly decrease throughout the training epochs, reducing to 0.0001. Input data
is augmented by means of vertical/horizontal flips, scaled and standardized in a sample-
wise manner.
In order to evaluate the performance of the network, we consider several accuracy measure-
ments. As previously mentioned, our dataset is composed of several segments extracted
from a set of original images, at most 5 per image. The segments are split into training and
validation sets so that the segments that originate from the same image will be either in the
former or in the latter set. Classification performance can be most easily evaluated on the
basis of individual segments. More intuitive, however, would be an orthoframe-based pre-
diction where a simple election system is arranged to find out the winning class among the
segments collected from the given orthoframe (assuming that each orthoframe represents
one road type only). Figure 3.9 depicts an example of the election scheme for orthoframe-
based prediction. The performance measures for segment-based and orthoframe-based
classification for the primary dataset are given in Tables 3.3 and 3.4, respectively.

Table 3.3: Segment-wide Confusion Matrix for Custom Network. Most of the mistaken
predictions happen when Gravel Road is the true label.

Predicted / True Paved road Unpaved road Gravel road TP FP TN FN Precision Recall

Paved road 2538 18 184 2538 202 4628 123 0.926 0.951
Unpaved road 10 2214 192 2214 202 4953 131 0.916 0.944
Gravel road 122 113 2109 2109 235 4780 376 0.899 0.849
Average 0.914 0.914

Table 3.4: Segment-wide Confusion Matrix for Custom Network. Paved road prediction
quality decreases. However, better prediction for Gravel and Unpaved road help keeping
up the overall accuracy.

Predicted / True Paved road Unpaved road Gravel road TP FP TN FN Precision Recall

Paved road 512 5 29 512 34 932 22 0.938 0.959
Unpaved road 2 450 37 459 35 963 43 0.920 0.959
Gravel road 20 14 431 438 54 957 51 0.927 0.867
Average 0.928 0.928
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Figure 3.9: Election Process. Segments labels are predicted by the network. The image
class is decided by the most frequent label for relative segments

The analysis of the confusion matrix relative to the segment-wise classification reveals good
performances in classifying Paved road and Unpaved road data, which reach ~95% recall
values. On the other hand, Gravel road seems to be a major cause of fail cases and its
best recall performance settles at ~85%, 10 percentage points less with respect to the other
cases. Consequently, the average recall resulting from these measurements drops to 91.4%.
When it comes to orthoframe-based prediction, however, performances on all the labels
receive a considerable improvement, especially on Gravel road data where precision climbs
from 89.9% to 92.7% and recall from 84.9% to 86.7%, thus granting an average gain of
2.3%. On the average, we register a 1.4% improvement with respect to the segment-based
prediction.

On the ReLU and Leaky ReLU Activation Functions In most of nowadays CNNs,
the Rectified Linear Unit (ReLU) is the default recommended activation function to apply
to the hidden units in the network. This very simple function, allows to avoid the output
saturation by applying a simple max operation on it:

Hn = max(0, yn).

Where yn is the output of the nth layer. What’s more, ReLU introduces a non-linearity
inside of a network, thus allowing it to reach a higher approximation power. This, however,
does not come free of any cost: using ReLU as an activation function may in fact cause
other side problems, such as that of the “dying ReLU”, which brings neurons inside of the
network to never activate. To avoid this and to allow an easier flow of the gradient during
the backpropagation phase, we experiment the use of the so-called Leaky ReLU [74]. This
variation of the ReLU, instead of thresholding negative values to zero, basically multiplies

67



Davide Liberato Manna et al. Road Feature Extraction With Deep Learning Methods

them by a small constant, which is typically set to 0.01, whenever encountering negative
values instead of thresholding them to zero.

H
′

n =

yn if yn ≥ 0,
ayn if yn < 0.

In this way, the first order derivative will not be zero for negative values, instead updates,
even though small will still be made possible. Although the authors report negligible im-
pacts on accuracy with respect to ReLU, our experiments show that Leaky ReLU activation
functions averagely yield ~2% accuracy gains to final predictions, hence the adoption for
our custom network.

Further Experiments on Datasets In section 2.1.2, we mentioned the creation of
several different dataset apart from the original one, namely the Sharp, Blurry and Mixed
datasets. Differently from the original dataset, these three ones contain segments which
were extracted in a guided approach, by selecting respectively segments belonging to the
central zone only, to the border zone only and anywhere in between for each image. In
order to analyse whether the segments position within the image, thus the fact of being
blurrier or sharper, has an impact on the prediction accuracy, we cross validate our network
by training it on each of the aforementioned datasets, each time evaluating its performance
on all of the validation sets of such datasets. In other words, we first train our network
using the Blurry train set and validate it by evaluating its performance all the Blurry,
Sharp and Mixed validation sets, then we do the same for the Sharp and Mixed train sets.
As done for previous network evaluation, we collect data in confusion matrices and obtain
Precision and Recall values, which we present in a condensed form in Tables 3.5 and 3.6.

Table 3.5: Precision and Recall values for segment-wide evaluation. Prediction improves
when done on alike set of samples.

Validate On / Train On Blurry Mixed Sharp

Precision Recall Precision Recall Precision Recall
Blurry 0.903 0.903 0.895 0.895 0.857 0.858
Mixed 0.893 0.892 0.903 0.903 0.889 0.889
Sharp 0.872 0.872 0.892 0.892 0.903 0.903
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Table 3.6: Precision and Recall values for image-wide evaluation. Alike set of samples still
obtain more accurate predictions, however Mixed-trained networks seem more resilient to
changes.

Validate On / Train On Blurry Mixed Sharp

Precision Recall Precision Recall Precision Recall
Blurry 0.918 0.917 0.911 0.911 0.884 0.883
Mixed 0.922 0.922 0.928 0.927 0.910 0.910
Sharp 0.884 0.884 0.911 0.910 0.917 0.917

As expected, networks trained on either Blurry or Sharp datasets seem to perform better
when asked to predict labels for validation data belonging to the same type, slightly worse
when working on Mixed data and even worse when working on opposite-type data. A
Sharp-trained network will lose up to 5% accuracy when attempting to classify segments
originally belonging to the Blurry validation set. On the other hand, networks trained on
the Mixed dataset have higher mean accuracy levels across all of the validation sets they
are tested on: a likely explanation for this behaviour might be that, given the mixed nature
of the training set, the networks learn a better and more generalized representation of the
data, therefore resulting into more stable and reliable predictors.

Adapting an Existing Solution

Deep convolutional neural networks [52] have brought great advances in the field of image
classification. Each convolutional layer in a deep network learns progressively higher-level
features by being staked onto previous ones. Moreover, previous studies demonstrate that
network depth has a crucial role in the accuracy of the classification task [64]. Our first
approach to the classification problem was to build a relatively shallow CNN with 8 layers
of depth only, while state-of-the-art solutions often count over 50 layers. Simply adding
layers to a convolutional network, however, does not guarantee an improvement in accuracy
and side problems such as that of the vanishing/exploding gradients [73,75] or the training
accuracy degradation arise. While the vanishing gradient issue has largely been addressed
and reduced by means of normalization systems, such as batch normalization, the training
accuracy degradation has been faced in other ways. In particular, He et al. [56] have
achieved to build very deep convolutional networks by including skip connections between
the basic building blocks in the network architecture. Such connections allow to avoid
degradation problems by introducing a direct link through which information propagates
more easily in spite of network’s depth [76].

Deep Residual Network Given the success that so-called Residual Networks (ResNets)
have had on the classification task, we experiment with a 50 layer implementation (ResNet50)
as described in [56]. Other implementations, such as those with 101 and 152 depth layers,
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do not fit in GPU memory and cannot therefore be used. To start with, we initialize
the network’s weights to Imagenet, then we remove the final dense layer for two distinct
reasons. Firstly, our input shape is 128x128, while in the original implementation it is
224x224. This means that the output from the last convolutional layer would have differ-
ent resolution and would thus not be compatible with the FC layer, whose size had been
statically computed basing on the feature map resolution resulting from the previous input
size. Secondly, in the original implementation there was the need to classify 1000 different
labels, whereas in our case we only need 3. We then proceed by adding a first FC layer
with 512 neurons and ReLU activation function, followed by a Dropout layer with 50%
probability and a second FC with 3 neurons. This last layer is provided with a SoftMax
activation function to enable prediction and loss evaluation by cross entropy function. As
a result, the network counts ~40M parameters in total, which is a considerable difference
with respect to the previously employed network, however it is still low enough to not cause
out of memory issues. We train all the layers of the network for 100 epochs on the whole
training set using the same training configuration and data pre-processing as before. The
CNN performance measures are collected and presented in Tables 3.7 and 3.8.

Table 3.7: Segment-wide Confusion Matrix. Along with the prediction frequencies, pre-
cision and recall values are reported. The network seems to have more difficulties when
dealing with Gravel road class.

Predicted / True Paved road Unpaved road Gravel road TP FP TN FN Precision Recall

Paved road 2599 9 134 2599 143 4687 71 0.947 0.731
Unpaved road 8 2261 157 2261 165 4990 84 0.931 0.964
Gravel road 63 75 2194 2194 138 4877 291 0.940 0.882
Average 0.940 0.940

Table 3.8: Image-wide Confusion Matrix. Along with the prediction frequencies, precision
and recall values are reported. Overall performance increases.

Predicted / True Paved road Unpaved road Gravel road TP FP TN FN Precision Recall

Paved road 525 1 18 525 19 947 9 0.965 0.983
Unpaved road 2 459 25 459 27 1004 10 0.944 0.978
Gravel road 7 9 454 454 16 987 43 0.965 0.913
Average 0.958 0.958

Although the number of fails case related to Gravel road is still higher when compared to
Paved road and Unpaved road, the overall statistics receive a striking improvement with
respect to the custom network and gain 2.6% points on the segment-based classification.
When evaluating orthoframe-based performance, the overall precision and recall measures
improve from 94% to 95.8%, therefore gaining 3% points compared to the custom network
solution.
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3.2.2 Conclusions

We applied and analysed two types of networks. The custom CNN reaches 90% validation
accuracy levels in first 12 epochs, then starts a refinement phase in which learning progress
has a much slower pace, reaching a final 91.4% accuracy after 100 epochs. ResNet50
saturates much faster - high accuracy values (~93.8%) only marginally different from the
eventual 94% are also obtained in the first 12 epochs. Figure 3.10 provides a visualization
of the learning curves.
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Figure 3.10: ResNet (blue) and our custom CNN (light-blue) compared. The graphs, show
the training loss over epochs (left) and the validation accuracy(right). ResNet reaches
higher accuracy values within fewer epochs.

The final step for the classification task consists in building a software implementing an easy
interface towards road surface type prediction. We achieve this by using PyQt library with
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Qt Designer, which allow us to quickly design a simple cross-platform GUI application. In
particular, we subdivide its functionalities into two separate tabs: the first one allows single
image predictions and its main role is to provide an illustration of how such prediction is
taking place and how the network is predicting single segments from the image, the second
one allows predictions on a batch of images organized in a structured folder and provides
results in a comprehensive csv file for later analysis. Figure 3.12 depicts an example of a
single-image tab, where the image, its mask and the CNN model must be selected before
proceeding to the classification. It is also possible to adjust the number of segments that
are used in the election process, although the value is restricted to odd ones, to avoid draws.
An in-app console output keeps track of performed actions and finally displays the colors
assigned to the classes, which are used to paint the segment boxes on the image itself. An
example of multiple-image tab is provided in Figure 3.11. Here, images are classified in a
batch and an image-by-image feedback is out of the scope. To sum it up, we have developed
a simple GUI application which allows its users to perform predictions on single images
or batches of them. Such predictions are made possible by a trained network, provided as
hdf5 file within the application package. Studies over the networks were carried out by
comparing the performances on the same datasets, with the same training parameters, of
two CNN architectures. These studies revealed better classification accuracy are provided
by ResNet50, which outperforms the shallow network by 2.6% percentage on a segment-
based classification and by 3% on an orthoframe-based one, thus confirming the higher
efficacy of deeper networks. Moreover, separate studies were aimed at understanding the
impact of the image quality of the extracted segments for the overall performance. We
found that networks trained on segments either closer to the border or closer to the centre
of the image lead to an averagely poorer classification quality when applied on data which
is different from the training one in terms of extraction position (image quality is in direct
correlation with the segment position). In particular, the networks trained on Sharp dataset
perform worse than others. On the other hand, a mixed location set of segments leads to
better results over any type of validation data, which is probably due to the fact that a
wider variance allows the network to learn a better generalization of data. Finally, while
the custom solution provides relatively high (92.8%) accuracy results, its shallower nature
imposes a limit on its performance. ResNet50, instead, embodies a greater learning power,
which leads to better classification accuracy. The results, however, might still be improved
and further experiments are to be carried out by using a wider range of augmentation
techniques and a bigger dataset. In addition, as image-based prediction is more accurate
than segment-based prediction, further generalization might be useful by considering a
series of images instead of single images.
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Figure 3.11: Pavement Detector Application - Multiple Image Mode The input data folder
is scanned to have a specific structure, which matches the ones provided by Reach-U

Figure 3.12: Pavement Detector Application - Single Image Mode The segments used for
classification are reported on the image. The color indicates the predicted label for each
segment
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Conclusions

In this work we focussed on the resolution of two main objectives. Firstly, semantic seg-
mentation research was set up. Datasets for this task needed to be built in the first place,
hence Berkeley Deep Drive dataset was used a reference and some guidelines were provided
to hired persons in order to enable them to produce suitable ground truths. By the end
of this process two datasets wer finally produced. The first road-related dataset contained
230 samples of cropped images were labels such as road, road markings and cars were high-
lighted in different colors. Given some interest changes, the second dataset contained over
3000 samples, however the labelled objects differed from the previous ones. Here, poles,
traffic signs and information signs were labelled inside the ground truths. The nature of
such objects lead to the cration of a very unbalanced dataset given that most of the pixels
in the image represented background information.
Three distinct convolutional neural networks (CNNs) were mainly researched. The first
one consisting in a simple implementation of an autoencoder architecture, the second one
in a Dilated Residual Network implementation and the third one in a novel architecture
combining several aspects in what we called a Pyramidal Network (PyramidalNet). Pyra-
midalNet, in particular, was characterized by a novel building block — the pyramidal block
— in which dilated convolutions are used in parallel and then concatenated. What’s more,
skip connections internally to the building blocks and among units in the encoder and the
decoder parts are used. These networks have been studied by performing experiments on
the aforementioned datasets and finally brought to the choice of the PyramidalNets as a
subject for further studies.
Secondly, we addressed an image classification task in which different road types needed
to be told apart. Since the outcome of this task will be used for other applications such
as 2D to 3D transposition and since the original data source was very unbalanced, we
built an image segments extraction system. This system allows the extraction of suitable
segments containing road only image parts, thus allowing to build a balanced dataset and
to train the networks on more class-specific features. Next, we researched two different
CNNs following the hardware constraints which held us back from testing further deeper
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architectures. Both the researched CNNs achieved remarkable results, however, at last,
ResNet50 — a 50 layers-depth implementation of the Residual Networks — showed better
performance by striking 95.8% both in recall and precision measures.
As a last step, a GUI application integrating our best CNN for a straight-forward use of the
classification system. The application allowed to perform batch predictions by selecting
image directories and to perform single-image predictions for investigation purposes: the
used segments for image-wide prediction are displayed on the image itself.
The provided solutions were finally able to satisfy the end goals of this work, which are
aimed to allow future research and development of deep learning systems to transpose 2D
data to a 3D environment.
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