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8



Chapter 1

Introduction

To PID or not to PID?
Vance VanDoren, PhD, PE

Design of efficient and reliable industrial applications is critical for reducing
resource consumption and energy waste thereby ensuring ecological sustain-
ability. However, although relevant advanced industrial control techniques
are readily available, proportional-integral-derivative (PID) controllers mas-
sively enjoy unrivaled popularity in industrial process control applications.
One of the reasons for the popularity of the common PID controller is its
relative simplicity coupled with its applicability to a wide range of industrial
control problems [3]. However, it is also a commonly acknowledged fact that
only a fraction of the existing PI/PID controller based loops are tuned to
achieve optimal performance [49]. Meanwhile, contemporary industrial ap-
plications are growing in complexity and demand a more advanced control
scheme to be employed to ensure robustness and efficiency [73].

The work started here is concerned with control of industrial processes.
The case considered is a water heating process for a district heat system
that is part of a power plant located in Tallinn, Estonia. At the same time
proposed solution is not limited for use only in that production unit, but can
be applied to other processes of the same kind. After certain revisions and
testing it is also applicable to any kind of the process.

During this work the process was studied, modeled and then controlled
with a new type of control for existing control system. A model predictive
controller (MPC) was developed as stand-alone application and applied to the
process control in combination with existing PID controllers. This improved
the process control performance significantly, showing at the same time that
MPC is a good tool, but it is not able to tackle the complete multitude
of challenges in overcoming physical drawbacks of the process control. As
it is stated in many texts related to real industrial application, e.g. [15],
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the first step to improve process control is to check instrumentation and
process itself for faults and design mistakes. Advanced control can only be
efficient afterwards. We did not have the opportunity to make modifications
in the real process, so we studied what results can be achieved with pure
mathematical methods applied to existing non-perfect equipment.

As it was cited in the same survey [15]: "An important point to make
concerning academic research is that the results are not just algorithms and
software (many of which have not directly impacted industrial offerings), but
the insight gained for what can and cannot be achieved for a given system
and/or controller (Morari, 1997)."

1.1 State of the Art

Modern process control is a huge technological and engineering area with
many layers solving various control tasks on different control levels.

The first level that interacts with the process directly is represented by
an actuator-sensor layer. These are field devices that measure process phys-
ical parameters (e.g., temperature, pressure, flow) and directly affect these
parameters with physical actions (such as valves, pumps, mills). To satisfy
proper control requirements sensors have to be properly selected, calibrated
and installed. Sensor is not able to reflect the real process state, if it is not
suitable for the measured environment (e.g., different types of devices are
used to measure steam and water flow, these are not replaceable), not cali-
brated (shows incorrect values) or is installed in the wrong position, where
the parameter of the environment is not physically measurable. Also, the
actuator should be properly selected and installed. If a valve is always used
in the range below, e.g., 20% of its full operating scale, then it is clearly over-
sized and its sensitivity is low thus providing low quality of control. If a pump
frequently works at its peak power, then clearly it is not powerful enough,
causing control loop to saturate and degrade in control quality. Nowadays,
there are clear rules for equipment selection [38], but according to the 14
year work experience of the author of the thesis as an automation engineer,
wrong choices in selecting adequate instrumentation are mainly made due
to either engineering mistakes or the motivation to reduce project costs by
selecting less expensive equipment of lower quality.

The next level of process control is based on controllers or control appli-
cations normally done in PLC (programmable logic controller) or DCS (dis-
tributed control system), where sensors and actuators are connected with
wires (input-output cards) or information buses or networks. The most
widely used control law is still based on the conventional PID (proportional-
integral-differential) controller. The reason is obvious — the PID controller
is capable of handling the majority of control tasks reasonably well. Almost
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every DCS contains a PID auto-tuning mechanism, making its implemen-
tation easy even for people without control theory knowledge [7]. In the
experience of the author, PI controllers are used in almost all possible pro-
cess control applications, but according to the sources world wide the share
of PID controllers is around 90 [2]. The D component is not frequently used,
because it is mainly suitable for rapid processes only, so PI controller handles
majority of control tasks of slow industrial processes.

The PID algorithm is suitable for controlling a single input single output
process loop, so these serve as a departing point to the next level of process
control applications where these single loops are connected to each other
with higher PID cascades or custom logic applications or some advanced
control techniques such as model based control or fuzzy control. This layer
calculates optimal set points for the underlying level and is normally made
as a part of DCS or a separate software product. Higher level is not regarded
as control, but more as planning. It is normally some kind of Enterprise
Resource Planning (ERP) System that sets production targets for the process
[15,53].

This thesis is focused on possible benefits of the third level of the hierarchy
discussed above and is dedicated to model based control or model predictive
control (MPC). It can also play on the level two substituting PID loops, but
in industrial processes it is more suitable to optimize lower level loops by
computing optimal set point [15, 53] (see Figure 1.1). Level one consists of
sensors and actuators for temperature (TC), flow (FC), pressure (PC) nad
other process parameters controls.

Local PID controls

TC FC PC

Plant PID controls

Enterprise Resource Planning

Advanced Process Control

REPLACE

Level 1

Level 2

Level 3

Level 4

Figure 1.1: Process control hierarchy.

Model based control has a long history going down to 1960’s [53], when
linear quadratic Gaussian (LQG) controller was presented [4, 30]. It was an
unconstrained controller based on state-space model with Kalman filter as
observer.

The first real model predictive controller (MPC) systems were first imple-
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mented in 70’s mainly in petrochemical industry. First publications on this
topic appeared in the late 70-s [13,55], those introduced model predictive con-
trollers of the first generation. They showed promising results in real control
applications and caused excitement in the process control community. Mul-
tiple startup companies developed their own model base control algorithms
and implemented them under various trademarks. The major problem of the
algorithms of the first decade of MPC was their heuristic nature and lack of
a theoretical base [37]. Richalet presented his IDCOM (Identification and
Command) controller in 1976. Cutler and Ramaker implemented dynamic
matrix control (DMC) without constraints in 1973, but already in 1980 it
was endowed with constrained control.

Theoretical research and development of MPC controllers have reached
a mature state in the 90’s. Model predictive control theory was formulated,
terms were unified, controller stability was proven, studies on robustness and
nonlinear MPC were made [37]. The same decade was fruitful in terms of
development of commercial MPC solutions. A number of related companies
were purchased and merged which established the key players present in the
market today: Aspen with DMCplus solution, Honeywell with RMPCT and
Schneider with Connoisseur [53]. There are also other companies implement-
ing MPC internally or offering it as a commercial product, but there is not
much open information about them.

Nowadays MPC can be found in diverse industries such as: petrochemi-
cal, chemical [19,46,59], pharmaceutical, energy, food and many others. Vast
development of processing power along with the proposal of new and efficient
algorithms made it possible to implement model based control in other areas
than industry with its slow processes. Nowadays, optimization can be per-
formed within milliseconds which allows to use MPC in fast process control
loops. The method finds its application in vehicle engine and suspension
control, power electronics and drives control [69], automotive industry [17],
power trains, building automation [26,41], power electronics [8,57,69], traffic
control [16, 40] and many others, where control cycles go down to millisec-
onds. Good reviews of MPC development and implementation are given
in [21,25,37,53].

Classical approach described by the theory assumes formulation of MPC
task as a quadratic programming problem and its solution with suitable
optimizer. The general problem is stated mathematically as

min
θ

(
θTΦθ + φT θ

)
(1.1)

subject to

Ωθ ≤ ω, (1.2)

12



where θ is a vector of process inputs that should minimize cost function and
Φ, φ, Ω and ω are matrices and vectors of known parameters.

There are various ways to solve the problem. Active Set Method and
Interior Point are two popular choices that perform well [11, 42]. Interior
Point Method was proposed by Rao, Wright, and Rawlings [54]. It is char-
acterized as being fairly easy to implement, yet performing very well. Its
computational complexity is linear in the problem size as opposed to expo-
nential complexity of the other methods. That is why interior point method
is one of the most widely used to solve the MPC problem.

The following main MPC development directions are highlighted in [15,
18]. Nonlinear models are becoming more popular as majority of processes
are nonlinear. Use of respective type of model can produce certain benefits in
the form of more accurate control and better performance. Next interesting
topic could be study of robust MPC. MPC for uncertain processes (Stochastic
MPC) could also see further development, as they are closest to real processes
that may have parameters and disturbances causing non-deterministic behav-
ior [44]. Development of adaptive MPC is another concern promising many
benefits in real life applications. Identification and modeling for MPC pro-
vides space for further development. One of the newest areas is distributed
MPC, where optimization task is distributed between many decentralized
computation nodes managing optimal control of the whole process at the
same time.

Research area of this thesis is industry, where MPC development and im-
plementation continues ever on. Major part of practical research is related
to chemical industry with its complicated multi-variable nonlinear processes.
Modern research expands classical approach looking for benefits in various
non-standard solutions. Many papers consider a popular highly nonlinear
continuous stirred tank reactor (CSTR) [6]. There are several research pa-
pers related to this process that propose the use of hybrid nonlinear models
consisting of several linear models [35], compare use of linear and nonlinear
MPC [34], propose robust control with incremental action [5]. Use of nonlin-
ear MPC with neural network model is proposed in [51] for control of boiler
unit. There are also multiple research on use of fuzzy logic in combination
with MPC [14]. The general trend of today’s scientific development is com-
bining MPC algorithm with other control approaches. This is an interesting
and perspective way, but it takes many years until novel ideas are tested and
reach wide industrial adoption [20].

Energy production that is concerned in this work can also utilize multi-
variable capability of MPC. There are various research references of using
model based control in energy production [32,36,45,76]. Normal way of MPC
utilization in energy application is optimal set points calculation for lower
level PID based control loops, thus providing optimal control for the whole
process. At the same time it is possible to replace all PID loops with MPC,
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where the advanced controller produces control action directly to actuators.

Typical way of MPC implementation to the real process nowadays in-
cludes [15,38]:

1. Pretest and preliminary MPC design.

2. Plant testing.

3. Model and controller development.

4. Commissioning and training.

In the pretest phase sensors and actuators are checked and low level PID
controls are tuned for better performance. During the same step initial MPC
design is performed: control targets are defined, controlled and manipulated
variables selected. In plant testing phase manipulated variables are excited
and model identification data is collected. In the third phase of modeling and
control development process data is analyzed, process model is identified
and a suitable controller is designed on the base of the acquired model.
Initial tuning and testing is performed in a simulation environment. In the
commissioning phase the controller is implemented to the real process, its
behavior is observed and analyzed, final tuning is performed. Also process
operating personnel is trained to use MPC in process control.

1.2 Motivation and Problem Statement

Energy industry is the largest and one of the most important in Estonia. On
the background of rising prices for fuels it is extremely important to produce
energy in the most efficient way. Proper control is vital for efficiency in any
industry including energy production. Modern processes have normally wide
range of parameters that have to be supervised and manipulated. It is hard to
achieve good control with use of single input single output (SISO) controller
like PID. PID is good for simple processes, but there can be multiple inputs
multiple outputs (MIMO) loops in industry that require use of advanced PID
techniques utilizing combination of many individual PID controllers. Such
control loop is hard to tune and its efficiency is often under doubt.

MPC is a strategy to control loops with multiple inputs and outputs.
By its nature it can optimize complicated loops and control process with
maximal efficiency. First MPC solutions were implemented in 1970s. Never-
theless, still it is rarely used in industry. Variety of well known automation
companies such as Aspentech, Honeywell and others [42] offer MPC solutions,
but these are expensive and hard to implement, since this requires presence
of highly educated experts from other countries.
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In this thesis, the development of an MPC application is considered for
use in Estonian industry with local implementation and support. The main
idea is to increase efficiency of industrial processes in the country. MPC is a
general concept, so it can be implemented not only in energy industry, but
also in any other process area, such as chemical, water treatment, pulp and
other industries [15, 18,28,53].

Although the MPC has known advantages, there are also some drawbacks
that limit its use in every possible application. One limitation is the necessity
to obtain a coherent process model that can be impossible in some cases, e.g.,
when certain relevant process parameters are not measured. To mitigate this
drawback we review another advanced control technique before considering
the MPC approach. Specifically, we apply fuzzy control that does not require
a model, but only good practical knowledge about the inner functioning of
the process. The implementation of fuzzy control is described in this work
as an alternative to the MPC solution and a comparison of advantages and
drawbacks of these control techniques is provided.

In the present work, a small biofuel boiler house is considered as an ex-
ample of the process with unmodeled dynamics due to missing fuel quality
measurement. At the same time PID control efficiency is low there as con-
trol loop has one process input, but two process outputs. Fuzzy control
implementation is considered there as efficient method to solve such control
tasks.

To support further development of the topic of advanced control, a com-
bined heat plant (CHP) is considered as an example of energy production
unit with modeled dynamics. Plant production facilities include a waste to
energy (WtE) power unit that produces heat and electricity, and a gas-fueled
water boiler that produces only heat. Power plant is controlled by means of
DCS that can maintain a high level of automation. WtE unit produces 50
MW of heat power at its maximum capacity. When this heat is below city
demand, a water boiler is started. Water boiler produces up to 116 MW of
heat. Power unit is normally operated at a constant load and water boiler
produces variable heat depending on the district heat (DH) network’s de-
mand. The biggest challenge is to control the water boiler so that it could
change the power production as fast as DH network load requires. At the
moment of starting this work, boiler heat production was controlled with a
cascade PI-controller consisting of three cascades: plant outlet water tem-
perature control, water boiler outlet temperature control and boiler gas flow
control. This loop had a very slow response and it could not handle process
disturbances of the plant, so plant output had significant deviations from
specification limits. In addition, the loop was tuned for control of the pro-
cess in a certain operating point close to the maximum load of the boiler.
Most of the time, the boiler is operated with the power production below
half of the load, where existing control is not functional at all. Control loop
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is operated manually in such cases causing out-of-specification production.
The PI includes 3 cascades as shown in Figure 1.2.

Figure 1.2: Controller layout.

The upper cascade C1 controls output temperature of the water leaving
the plant towards district heat network — process P1. C1 output is used
in calculation block CALC1 to compute set point for the next cascade C2.
The second cascade controls output temperature of the boiler - process P2.
Its output is used to compute set points for lower cascade. Lower cascade
loops C3, C4 and C5 control gas and air flow by manipulating related valves
and variable speed fans. Additional calculation block CALC2 is used to take
into account other process parameters: DH water flow through the plant,
water flow through the boiler and power of other water boilers if any is
running. Loops 3-5 are fast, Loops 1-2 are much slower compared to them.
See Table 1.1 for all parameters’ values of the controllers.

Cascade PI controller is used in the process to build a complex MIMO
control. According to [1, 6] it can be successful due to significant difference
in time constants between processes P2 and P3, where process P3 is much
faster. And yet time constants of the processes P1 and P2 are comparable, so
these cascades do not produce good performance. The control task is mainly
solved by additional calculation blocks than by tuning upper PI cascades. In
this configuration controller was tuned during control system commissioning
in 2008. Since then it has been working without modifications.

PI control loops with similar characteristics can be found not only in
the considered plant, but almost everywhere in the energy industry. Some-
times their unsatisfactory behavior is caused by improper tuning (if appropri-
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Table 1.1: Controllers tuning parameters.

Control loop Kp Ti

Air pressure 1 (C4) 0.2 40

Air pressure 2 (C4) 0.2 40

Air flow 1 (C5) 0.8 18

Air flow 2 (C5) 0.3 20

Air flow 3 (C5) 0.4 29

Gas flow (C3) 0.25 20

Boiler output (C2) 0.9 240

Plant output (C1) 0.5 180

ate tuning is possible at all), sometimes by wrongly selected control devices
(valves, actuators etc.), sometimes by technological mistakes. Also PID con-
troller is still the main control tool, but it is not able to solve efficiently some
control tasks, e.g. related to the processes with delay, MIMO processes. So,
there is an ample space to study this industry for possible benefits of ad-
vanced process control and offer solutions to improve the situation overall.
Certainly this cannot solve all existing problems widely spread in practi-
cal industrial control, but it can mitigate some consequences of technologi-
cal mistakes. Surely, it can improve performance of the complicated loops,
where PID controller does not perform well enough. Model based control
was selected for these purposes as one of the most efficient advanced control
techniques. It also goes in line with Industry 4.0 modern trends with its big
data processing and process optimization. Model based control can utilize
huge amount of process data to update models periodically improving control
quality and rising production efficiency to unprecedented highs.

According to Statistics Estonia there were 3430 boilers in Estonia by the
end of the year 2016 [60]. 25% of these are biofuel boilers and 41% are gas
boilers. Biofuel and gas boilers utilized in district heat generation produce
77.6% of all the district heat [62]. Development of advanced process control
solution for these processes has huge implementation potential providing sus-
tainability and high efficiency of the heat production.

The main goals of this thesis are as follows:

• Improve significantly performance of the current processes. The precise
criteria depends on the particular process and are discussed in the
corresponding sections of the thesis.

• Reduce participation of the human factor and increase automation level
of the heat production facilities.

• Implement developed advanced proceses control (APC) solutions in the
real processes thus proving efficiency rise in practice.
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• Analysis of implementation results producing recommendations for APC
use in DH generation facilities.

1.3 Author’s Contributions

To the best of the author’s knowledge, the stated contributions are novel
to implementation of model based control for energy production industry in
Estonia:

• Analysis of existing heat energy production control loops in Estonian
industry for benefits of model based control use. Comparison of pro-
cesses with modeled and unmodeled dynamics.

• Investigation and analysis of existing control systems’ drawbacks influ-
encing the quality and efficiency of energy production.

• Analysis of advanced control strategies and their applicability to dif-
ferent types of District Heating Plants in Estonia. Selection of suitable
control technique depending on process characteristics.

• Mathematical modeling—identification of dynamic system models—and
CACSD based simulation of the process and closed loop control system.

• Analysis of control strategies based on computer simulations.

• Practical implementation of the designed controller, analysis of the
results, and formulation of expert advice towards improving the quality
of existing feedback control loops.

1.4 Thesis Outline

The thesis includes seven chapters.

Chapter 2

The control of processes with unmodeled dynamics is considered. The chap-
ter gives example of a fuzzy controller application as alternative to MPC,
when modeling of the process is not possible due to unmeasured process
variables. A control system based on Takagi-Sugeno approach is designed
and implemented on in a live control situation. Results of this integration
are provided and analyzed.
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Chapter 3

The chapter gives overview of process model identification techniques and
includes detailed description of the considered process of CHP together with
its mathematical modeling.

Chapter 4

Description of model predictive control theory used in current work is pro-
vided. Employed algorithms and methods are described.

Chapter 5

In this chapter, the designed MPC application, design of process simulation
environment and preliminary off-line MPC testing in simulation are intro-
duced.

Chapter 6

The chapter provides detailed description of MPC application implementa-
tion to the considered process, analysis of the results and list of benefits that
can be achieved in such kind of processes.

Chapter 7

In the final chapter, results of the thesis are reviewed and overall conclusions
are drawn.
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Chapter 2

Control of Unmodeled
Processes

While considering the processes for model based control we encountered also
such processes, where it is not always possible to fully identify the process. If
there are unmeasured disturbances that affect process behavior significantly,
then acquired model does not produce the same output as the process because
of unmodeled dynamics. In this case model based control would produce poor
results, so other control methods should be applied. PID itself does not use
process model knowledge and is suitable for basic control. As we consider
more complicated processes, where PID performance becomes unsatisfactory
(certain criteria depends on the process), then we have to search for other
techniques. These are numerous like adaptive control, expert systems, arti-
ficial neural networks, evolutionary algorithms etc. [18]. Some of them are
used in industry widely, others are in development. We selected fuzzy control,
as it does not rely on the model, but on knowledge of how process should be
operated [38,50,61] and it already has tools for industrial implementation.

In Estonian industries, processes with unmodeled dynamics could be en-
countered in fossil fuel (oil shale) and biofuel boiler houses and power plants.
Fossil fuel and biofuel can have various calorific values and humidity that
affect heat production process directly. These parameters are not normally
measured on-line, so it is not possible to use this information in control. At
the same time, the influence of these parameters to the process is so high that
model based prediction without taking these into account can be completely
erroneous.

This chapter considers the case of using fuzzy control in one of Estonian
boiler houses running on biofuel [67].
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2.1 Process description

As an example of a process with unmodeled dynamics we consider a process
control problem of a boiler house plant located in Rapla town near Tallinn
city in Estonia. The boiler house includes three gas boilers and one biofuel
(wood chips) boiler. Gas boilers 1 and 2 are currently not in use, so they
are not discussed in the present study. Main production facility of the boiler
house is biofuel boiler (number 4) as it is more economically efficient due to
lower biofuel price compared to natural gas price.

The biofuel boiler is operated permanently during the heating season
except for the maintenance periods. It can produce up to 5 MW of heat
power. If more heat power is required, then a gas boiler is turned on in
parallel with the biofuel facility.

Boiler house layout (excluding boilers 1 and 2) is presented in Figure 2.1.

Figure 2.1: Boiler house control layout.

There is an internal water pipeline where water circulates between heat
exchanger and boilers. The heat exchanger is a connection point between
internal and external pipelines. External pipeline is used for water circulation
between the boiler house and the district-heat (DH) network where heat
power is delivered to households and industrial consumers.

The biofuel boiler has a grate furnace. Fuel feeding speed can be adjusted
by changing the frequency of movement of a hydraulic piston that pushes
fixed amount of fuel into the furnace each time.

Boiler house automation is made on the base of a DCS that supports
fuzzy control implementation. Information exchange (measurements, control
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signals) with sensors and actuators is performed through input/output cards,
Profibus and Modbus interfaces. All the controllers and logic algorithms
are implemented as application programs. The DCS controls boiler 4 and
pipeline operations. Each gas boiler has its own simple control based on a
PLC. PLC control applications adjust gas flow to keep boiler’s outlet water
temperature on a certain set point value. There is no data exchange between
PLC and DCS, so it is possible to adjust gas boiler’s heat production only
by manipulating the water flow control valve V3.

There are two scenarios for boiler house operation. The first one is applied
when DH network demands less than 5MW of heat power and boiler 4 can
be operated alone and produce required amount of heat. Control loop TIC0
keeps boiler house water outlet temperature near the set point. Set point
depends on outer air temperature as shown in Table 2.1. A conventional PI
controller is used to control boiler house outlet water temperature. Controller
signal is supplied to internal pipeline pump frequency converter. Higher
frequency leads to the faster pump rotation speed rising water flow through
the boiler 4. The higher the flow the more heat is transferred to the heat
exchanger.

Table 2.1: Boiler house outlet water temperature dependency on outer air temperature.
Intermediate values are linearly interpolated.

Outer air temperature Boiler house outlet temperature

−22°C 95°C

0°C 69°C

20°C 65°C

Heat power supplied to the DH network is measured and connected to PI
controller UIC0 as a controlled variable. This controller keeps boiler 4 heat
power production near the set point by adjusting the amount of fuel feeds
per hour. Set point is calculated according to the following equation:

USP = cwfw0(TSP − Tin), (2.1)

where USP is DH network required heating power, cw is water heat capacity,
fw0 is DH network water flow, Tin is boiler house input water temperature
and TSP is TIC0 set point.

Boiler 4 has recirculation pipeline that passes part of boiler 4 outlet water
to its inlet mixing with water coming from the heat exchanger. This is needed
to keep the temperature in all points inside the the boiler above 100°C and
prevent moisture from the fuel to condensate on boiler walls on the furnace
side causing corrosion. There is a specific limitation related to this. Boiler’s

23



outlet water temperature has to be above 110°C. If it is below this value,
then recirculation flow is not enough to keep boiler inlet temperature greater
than 100°C. At the same time outlet temperature cannot be above 120°C,
because materials of the boiler and pipelines are not designed for long term
operation in such conditions. This can decrease boiler’s lifetime and increase
maintenance costs.

As UIC0 PI controller can keep only one measurement near the set point,
there is additional logic that prevents the controller to decrease its output
when outlet water temperature is below 115°C and goes down from one side
and to increase its output when the outlet water temperature is above the
same value and rises from another.

This control keeps outlet water temperature fluctuating in the range be-
tween 110°C and 120°C. At the same time boiler house outlet water temper-
ature deviates from the set point by 1°C, which is acceptable.

When DH network demand grows above 5MW the gas boiler 3 has to be
turned on to provide additional heat.

In this scenario control loop for boiler house outlet water temperature is
the same TIC0, but boiler heat power production is now managed by another
PI controller that has a static set point set by the operator. Normally its
value is the maximum capacity of the boiler 4 — 5MW. Remaining required
heat is produced by the boiler 3. There is a power controller UIC3 that
controls water flow through the boiler. Boiler 3 has a separate PLC that
keeps outlet water temperature near the set point 110°C. Produced heat
power can be controlled from DCS by only adjusting valve V3 position.

This kind of control did not work well due to hydraulic dependency of
water flows between boilers 3 and 4. When DH network demand is over 5
MW, boiler 4 works on its maximum capacity and boiler 3 produces remain-
ing heat. If DH network demand goes down, UIC3 adjusts V3 position in
closing direction. Water flow through the boiler 3 decreases, but due to hy-
draulic dependency flow rate increases through the boiler 4 and washes out
more than 5 MW of heat from it. As a consequence, boiler 4 outlet water
temperature falls down. At the same time heat power set point of boiler 3
decreases more, because boiler 4 heat production measurement goes above
5 MW. Valve V3 closes more because of this reason increasing boiler 4 flow
more. At the same time UIC4 additional logic forces it to increase feed rate
to rise boiler’s outlet water temperature causing boiler to function above its
maximum capacity.

An additional control loop TIC4 was used for testing purposes to control
boiler 4 outlet water temperature by adjusting valve V4, but this caused
other problems in process control. In the same situation when DH network
demand decreases flow through the boiler 4 rises, temperature falls down and
valve V4 starts to close under control of TIC4. This causes increase of the
flow through the boiler 3 and valve V3 continues to close. Because of this race
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condition the whole flow through the boilers decreases, boiler house outlet
temperature starts to fall down. TIC0 increases speed until achieves 100%.
Saturated control loop cannot keep boiler house outlet water temperature
close enough to the set point. In addition, pump motor working with 100%
speed consumes maximum electricity causing increase of own costs of the
boiler house production process. Race condition between TIC4 and UIC3
ended on approximately equal heat production in boilers 3 and 4. In case of
DH network demand of 7MW it meant not full load of boiler 4 and use of
extra gas fuel in boiler 3 due to this.

2.2 Fuzzy controller

It would be possible to use additional logic to try to keep both process pa-
rameters—boiler 3 heat production and water flow through the boiler 4—on
desired level, but at the same time it is a good opportunity to apply fuzzy
controller that is natural for multiple input multiple output (MIMO) sys-
tems. At the same time it is not reasonable to use model based control here,
because this is the process that is difficult to model properly. Biofuel is de-
livered by different vendors and it has different calorific values and moisture
that are not measured online. As these parameters are very important for
process modeling, so without these measurements we cannot get model with
satisfactory prediction quality. Process behavior would be random comparing
to any acquired model prediction. That is why fuzzy control is selected here,
because it does not rely on uncertain parameters, but takes into account only
measurable values. It is possible to set rules that cover all possible states of
the process thus providing desired control in the whole operating range of
the boiler.

Our target is to decrease heat production of boiler 3 when the needs of
DH network decrease. We are doing it by closing valve V3 and decreasing
the flow through the boiler 3. At the same time we would not like to increase
flow through boiler 4. So, we have system with two inputs and one output—
valve V3.

It was decided to apply a simple fuzzy controller for this case using three
triangular membership functions (MSF) for each input and five actions for
output. There are nine rules used (see Table 2.2). This combination showed
sufficient control efficiency later, so there were no reasons to make controller
structure more complicated.

Simple triangular MSF are selected for this application (see Figure 2.2).
The first input is heat power of the boiler 3. It is changing in time, so

MSF has to be changeable. To build the MSF we define two parameters—set
point (SP) and MSF width. Using these parameters we build three MSFs.
Middle one is “OK”, left one for low values of measurement and right one for
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Figure 2.2: Membership function

high values. Left MSF has value 1 from minus infinity to SP-width and then
decreases linearly to 0 by achieving SP. “OK” MSF increases linearly from 0
to 1 while moving from SP-width to SP and decreases linearly from 1 to 0
while moving from SP to SP+width. Right MSF increases linearly from 0
to 1 while moving from SP to SP+width and then has value 1 until infinity.
Set point value for the first input is calculated on the base of DH network
needs:

U3 = U0 − U4, (2.2)

where U4 is boiler 4 heat production, U0 is DH network demand, U3 is re-
quired boiler 3 heat production. MSF width is defined manually as 0.4.

Same mechanism is applied to the second input—water flow through the
boiler 4. Required value is calculated on the base of other process parameters:

fSP =
U4

cw(Tout − Tin)
, (2.3)

where U4 is boiler 4 heat power, cw is water heat capacity, Tin is boiler 4
input water temperature and Tout is boiler 4 outlet water temperature. So,
set point value is equal to fSP and MSF width we define manually as 14.

As it was mentioned earlier, closing of the gas boiler outlet flow valve
leads to reduction of water flow and heat production, because gas boiler’s
PLC control keeps outlet temperature constant. Less flow with the same
temperature means less heat and vice versa. At the same time decreased flow
through the boiler 3 while internal pipeline pump speed is constant causes
increase of flow rate through the boiler 4. Taking these facts into account it
is possible to describe following reasoning for definition of the fuzzy rules.

There are five possible actions defined: remove much, remove little, no
action, add little, add much. Following nine rules are defined:

Rule 1. When boiler 3 produces less power than needed and flow through
the boiler 4 is too low then no actions are needed. Due to low heat produc-
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Table 2.2: Fuzzy rules.

Rule Input 1 Input 2 Action

1 Low Low No action

2 Low OK Add little

3 Low High Add much

4 OK Low Remove little

5 OK OK No action

6 OK High Add little

7 High Low Remove much

8 High OK Remove little

9 High High No action

tion boiler house outlet water temperature will drop and TIC0 will increase
internal water flow pump M0 speed. Flow through the boilers 3 and 4 will
rise and boiler 3 will increase heat production as well.

Rule 2. If boiler 3 heat production is low and boiler 4 water flow is OK
then it is possible to open valve V3 a bit to increase boiler 3 heat production
while affecting boiler 4 water flow in a minor way.

Rule 3. If boiler 3 heat production is low and boiler 4 water flow is high
then there is obvious need to open valve V3 much to increase boiler 3 heat
production and decrease boiler 4 water flow.

Rule 4. If boiler 3 heat production is OK and boiler 4 water flow is low
then valve V3 can be closed a bit to increase boiler 4 water flow without
affecting boiler 3 heat production too much.

Rule 5. If both inputs are OK then no actions are needed.
Rule 6. If boiler 3 heat production is OK and boiler 4 water flow is high

then valve V3 can be opened slightly to decrease boiler 4 water flow without
affecting boiler 3 heat production too much.

Rule 7. If boiler 3 heat production is high and boiler 4 water flow is low
then valve V3 needs to be closed much to shorten boiler 3 heat production
and increase boiler 4 water flow.

Rule 8. If boiler 3 heat production is high, but boiler 4 water flow is OK,
valve V3 can be slightly closed to reduce boiler 3 heat production without
affecting boiler 4 water flow too much.

Rule 9. When boiler 3 produces more power than needed and flow through
the boiler 4 is too fast, no actions are needed. Due to excessive heat genera-
tion boiler house outlet water temperature will rise above the set point and
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TIC0 will decrease internal water flow pump M0 speed. Flow through the
boilers 3 and 4 will be diminished and boiler 3 will decrease heat production
as well.

Sugeno type fuzzy inference [61] is selected to produce fuzzy controller
output signal. “Product” AND function is used to calculate firing strengths
si of each rule i (i = 1, ..., N, where N is number of rules). Rule table
defines action ai for each rule, where every action has its own output level
l(ai). Final control con is calculated according to (2.4).

con =

N∑
i=1

wil(ai)

N∑
i=1

wi

(2.4)

Controller functions in incremental mode, con defines change of controller
output per second.

Output levels are selected by try & error method. Their values are shown
in Table 2.3.

Table 2.3: Output levels.

Action Output level

1 Reduce much -0.12

2 Reduce little -0.05

3 No action 0

4 Add little 0.05

5 Add much 0.12

2.3 Results

As it was written earlier, before implementation of fuzzy control there was
a PI controller for boiler 3 heat power control. It regulated heat production
without paying attention to water flow to boiler 4. As boilers 3 and 4 are
hydraulically dependent, manipulation of boiler 3 valve caused increase of
boiler 4 water flow leading to decrease of boiler 4 outlet temperature. Ad-
ditional logic of boiler 4 heat power controller prevents it from decreasing
fuel feed rate, if outlet temperature is low. Due to this reason boiler 4 was
producing 6MW of heat power for a few hours (see Figure 2.3a), which is not
allowed from technological point of view. Maximum heat production can be
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5.5MW for short period of time. Because of long overload boiler 3 heat power
controller was turned into manual mode. Heat production of boiler 3 was
controlled by the operator in manual mode for few days until implementation
of fuzzy controller.

After implementation of fuzzy logic boiler 3 heat power controller started
to take into account flow through the boiler 4 keeping heat production as
close as possible to the set point and supplying suitable amount of water to
boiler 4 for its proper operation on maximum load. Since this moment all the
controllers were switched to auto mode keeping all the process parameters
close to their set points. Boiler 4 heat production was close to 5MW and
outlet temperature close to 115°C (see Figure 2.3b).

In the bottom trend of Figure 2.3b it can be seen that boiler 4 heat pro-
duction variation frequency reduced since the middle point of the timeline.
This was caused by decreasing firing strengths of fuzzy controller rules. Prob-
ably it is worth to lower these strengths more to make variations smoother.
Unfortunately changed weather conditions did not allow to test modifications
immediately. DH network demand is less than 5MW and only boiler 4 is in
operation nowadays.

2.4 Conclusions

In this chapter we proposed and implemented control for a district heating
plant with unmodeled dynamics. The main contribution of the chapter was
the design and practical implementation of an industrial fuzzy controller for
a heating plant. The industrial application was tested and was found to
improve the performance of the underlying control loop which is supported
by experimental evidence. In particular, the new controller allows to properly
fulfill the control task, keep the equipment in the correct operating point thus
prolonging its lifespan, and prevent the necessity for frequent manual control
override. Therefore, the requirements for the controller put forth by a specific
heating element and described in this work are satisfied.

The main concern of this thesis is model based control, so we continue
by studying the process that can be modeled. Fuzzy control considered in
this chapter is efficient tool, but its implementation becomes more compli-
cated when number of process inputs increases. Since the amount of fuzzy
controller rules grows according to a power law of membership functions of
inputs, manual work on controller design becomes significant. For example,
for three inputs with five membership functions each, 125 rules have to be
defined. Model predictive control does not suffer from bigger number of in-
puts. It requires good enough process model and limited amount of suitable
tuning parameters.
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(b) Heat production after implementation of fuzzy control.

Figure 2.3: Comparison of boiler 4 control loop performance.
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Chapter 3

Identification of the Process
Model

The chapter describes the main process model identification methods used
to acquire suitable model for use with MPC in later chapters.

Construction of a good model is a key factor in model based control
techniques, while at the same time it is not the main goal, but an auxiliary
action. Thus considering modeling for process control we should not try to
achieve exact process-like behavior at any price, but build a suitable model
that is able to provide high process control performance. It is often possible
to achieve good results in real-life applications with use of relatively simple
models that reflect basic dynamic characteristics of the process [22]. In case
of real process control the feedback is always available. It helps to bring
model states in consistency with reality by using a state observer. In these
circumstances a key factor is the prediction of correct process dynamical
behavior rather than exact prediction of the process output. Model quality
is then directly related to process control quality—if the controller manages
to keep output value within acceptable range around the set point, then the
model can be seen as suitable for control purposes, even if it can not predict
exact process output in simulation mode.

Throughout the text of the chapter, the following notation related to
submatrix definition is used. Given a matrix Q ∈ Rn×m, a submatrix S ∈
Rn1×m1 , n1 6 n, m1 6 m having the elements qi,j , i ∈ [il, ih], j ∈ [jl, jh] of
the original matrix Q such that

S =




qil,jl qil,jl+1 · · · qil,jh
qil+1,jl qil+1,jl+1 · · · qil+1,jh

...
...

. . .
...

qih,jl qih,jl+1 · · · qih,jh
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shall be denoted as
S = Q[il...ih,jl...jh].

3.1 Identification methods

In what follows, system identification methods used in this work for modeling
the studied system are reviewed. This section is restricted to state-space
model identification by subspace and prediction error minimization methods.

The discrete time state-space model considered herein has the following
form:

x(k + 1) = Ax(k) + Bu(k) + w(t)
y(k) = Cx(k) + Du(k) + v(t)

, (3.1)

where u(k) ∈ Rnu , x(k) ∈ Rnx , y(k) ∈ Rny , w(k) ∈ Rnx and v(k) ∈ Rny are
the input, state, output, input noise and output noise vectors of the system,
respectively.

The purpose of estimation is to find suitable matrices A, B, C and D to
build a model that is able to predict process behavior. Matrix D is assumed
to be zero except some special cases, as normally there is no feed-through
from the inputs to the outputs.

One of the basic model identification techniques is the subspace method.
The method is considered in multiple papers [29,63,64,70]. It is not iterative
and it takes short time to estimate model by use of QR-decomposition and
singular value decomposition (SVD). The only parameter that is needed to be
set prior to estimation by the algorithm N4SID [64] is the order of the model.
There are freely defined matrices used in this method that are automatically
initialized by the algorithm. Although it is easy to identify a model with
this method, it shows generally weaker results compared to prediction error
minimization (PEM) method considered further.

In what follows, p is output dimension, m is input dimension, n denotes
the number of states.

In subspace method [39] first matrix G is computed:

G =
1

N
YΠ⊥

UT ΦT , (3.2)

where N + r− 1 is number of data samples, r is maximal prediction horizon,
Y is a matrix of output sub-spaces, U is a matrix of input sub-spaces:

Y =




y(1) y(2) · · · y(N)
y(2) y(3) · · · y(N + 1)
...

...
. . .

...
y(r − 1) y(r) · · · y(N + r − 1)
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and

U =




u(1) u(2) · · · u(N)
u(2) u(3) · · · u(N + 1)
...

...
. . .

...
u(r − 1) u(r) · · · u(N + r − 1)


.

Π⊥
UT is a geometric operator that projects a row space of a matrix onto

the orthogonal complement of the row space of the matrix U [63]:

Π⊥
UT = I−UT (UUT )−1U.

Φ is defined as:

Φ =
[
ϕs(1) ϕs(2) · · · ϕs(Т)

]
, (3.3)

where ϕs(t) is vector of output and input samples and s is a variable param-
eter normally set equal to r:

ϕs(t) =
[
y(t− 1) · · · y(t− s) u(t− 1) · · · u(t− s)

]T
. (3.4)

Then weighting matrices W1 and W2 are defined

W1 = I, W2 = (
1

N
ΦΠ⊥

UT ΦT )−1Φ (3.5)

and SVD performed:

Ĝ = W1GW2 = USVT ≈ U1S1V
T
1 , (3.6)

where S1 approximation includes only n the most significant values of singu-
lar values while others are set to zero (noise effect elimination).

A full rank matrix R is selected then and used to define observability
matrix:

Ôr = W−1
1 U1R. (3.7)

Matrices Ĉ and Â are found from:

Ĉ = Ô[1...p,1...n]
r , (3.8)

Ô[p+1...pr,1...n]
r = Ô[1...p(r−1),1...n]

r Â. (3.9)

Matrix B̂ and state vector x̂0 are found from:
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arg min
B̂,x0

1

N

N∑

t=1

||y(t)− Ĉ(qI− Â)−1B̂u(t)− Ĉ(qI− Â)−1x0δ(t)||2, (3.10)

where δ(t) is the unit pulse at time instance t = 0.
Another identification method of the state-space models PEM was pre-

sented by Ljung in 1987 [39]. PEM stands for prediction error minimization.
Basic idea of the method is to select suitable function that depends on model
parameters and is a measure of prediction error. Then, this function value
is minimized by optimizing model parameters.

Let model prediction error be

e(t, θ) = y(t)− ŷ(t, θ), (3.11)

where y(t) is process measured output for known inputs and ŷ(t) is model
output for the same inputs.

Output error can be filtered first to remove possible noise from the data:

eF (t, θ) = Le(t, θ), (3.12)

where L is some stable filter.
The next step would be to use following norm:

V (θ) =
1

N

N∑

t=1

l(eF (t, θ)), (3.13)

where N is number of samples, l(·) is scalar-valued function. Common choice
for l(·) is:

l(e) = e2, (3.14)

that is convenient for computation and further analysis.
V (θ) is a cost function that measures model quality. Model can be opti-

mized by finding better θ parameters.

θN = arg minV (θ). (3.15)

Various methods exist for minimizing cost function value. These are
least mean squares (LMS), Newton’s method and its variations, Levenberg-
Marquardt method etc. [47].

Estimated parameters must be initialized prior to identification. For-
tunately there is a straightforward way to define these parameters by per-
forming initial model parameters estimation via the subspace method. Af-
ter initial model is acquired, it can be refined by PEM method. Matlab
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Model Identification Toolbox is used to identify process model for further
use in model predictive control. By default Matlab identification toolbox
uses just 20 iterations for refinement, which provides similar result than the
one produced by subspace method. When number of iterations is increased
to 200–500, estimation becomes much more accurate. Implementation of
subspace method and PEM method to the representative data set is able to
provide a coherent linear model.

3.2 Process overview

The thesis addresses a problem of control of a water boiler and similar heat
energy production processes. Here we consider a water boiler that is a part
of bigger combined heat plant (CHP). The main objective of the CHP is to
produce heat power for the nearest cities.

The boiler was installed in 1978. This is an old model KVGM-100 unit
producing 100 kcal/h (116.3 MW) of heat power [52]. Some major invest-
ments were made to renovate the boiler infrastructure several years ago,
therefore it is now equipped with modern measurement and control devices
as well as DCS. All the control applications are implemented in the DCS on
the software level. It is possible to create or modify applications without
interrupting the process using set of predefined or programmable function
blocks. Still, control methods used in boiler control at present day are quite
conservative and are based on PI control algorithm.

Controlled variable in the main control loop of the boiler is the output
temperature. The fuel burning process, transfer of heat power from furnace
to water and hot water flow to the boiler output is relatively slow, so there
is a time delay between gas flow on the furnace input and water temperature
measurement on the boiler output. Since PI controller uses output error for
control, then it is dependent on the delay. Therefore the integration time
is set longer than measurement delay to avoid permanent overshoot. At
the moment of process data collection integration time parameter was 240
seconds. As the ideal PI control algorithm is used cout = Kp(e + 1

Ti

∫
edt)

then the real integration time is almost 270 seconds (Kp = 0.9). These
parameters result in a slow reaction of the controller to set point changes
and disturbances.

As the first step of our research we decided to model the process for
prediction purposes to reduce the delay effect. Neural network was used to
identify the process model [65]. The obtained model provided an acceptable
result for 5 minutes incremental prediction with 1 minute step, however it
was not suitable for further research in simulation mode. The problem was an
accumulated error that after the 10 steps of simulation resulted in oscillating
behavior with increasing amplitude.
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As the next step we decided to use linear identification of the process.
Using the identified model we proceeded with the design of the model predic-
tive control, which is known to be used as efficient solution for many control
tasks in industry.

3.3 Model identification

Process layout is shown in Figure 3.1. Only devices related to the considered
control loop are shown.

water

gas
FI

TI

- control valve

FI    - flow measurement

TI    - temperature measurement

TIFI

TI

FI

Figure 3.1: Process diagram.

After passing through the power unit (not shown in the layout), part of
the water flow with measured temperature is delivered to the water boiler,
where it is heated with natural gas. Remaining water flows through a by-
pass line. After exiting the boiler both flows are mixed and resulting flow and
temperature are measured on the plant output. Inputs and outputs listed in
Table 3.1 are used for deriving the dynamic model of the process.

Table 3.1: Model inputs and outputs.

Input/output Description
Input 1 Gas flow
Input 2 Boiler water flow
Input 3 Plant water flow
Input 4 Inlet water temperature
Output 1 Boiler outlet temperature
Output 2 Plant outlet temperature

36



For testing purposes, two different models of the process at different op-
erating points are created. One model is for process simulation and the other
one for MPC design. This is with the purpose of having a simulation closer
to reality, where the process model normally is not able to reflect exactly the
real process behavior. If we succeed in such a challenging simulation, then it
is highly probable that MPC will also work for the real process.

We propose to identify a model in state-space form (3.1). Use of this
model proved later to be suitable for MPC design for such kind of processes
maintaining excellent balance between complexity and control quality. Using
the model equations given in Eq. (3.1), we propose to identify two models
of the process at different operating points. Upper and lower limits of the
process data used for identification are listed in Table 3.2. This table shows
some overlapping in the operation points.

Table 3.2: Models operating points comparison.

Input/output Process MPC
Min Max Min Max

Gas flow, Nm3/h 3000 11500 2650 11450
Boiler water flow, m3/h 1220 1330 1295 1370
Plant water flow, m3/h 1500 4000 1600 4000

Inlet water temperature, °C 58 75 55 76
Boiler outlet temperature, °C 80 128 95 135
Plant outlet temperature, °C 74 86 76 88

Models were identified with the Matlab System Identification Toolbox [39]
using state-space models by means of Predictive Error Minimization method
(PEM).

Here, we distinguish two cases in the modeling.

3.3.1 Process model for simulation

Process model was identified using data sets collected from the process in the
period from February 27, 2014 to March 6, 2014, 7634 samples. Data sam-
pling interval is 1 minute which is enough to obtain a reliable representation
of such a slow process. Resulting model is:

A =




0.3589 −0.07221 −0.1482 0.05587
0.2856 0.9659 −0.1358 −0.2506
−0.7532 0.1398 0.4404 −0.08773
−0.03067 0.2475 −0.207 0.7836


 (3.16)
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B = 10−5 ·




−1.266 −0.9273 3.994 −728.6
2.514 −2.471 1.859 676.6
1.853 3.958 7.8 47.22
1.797 14.56 0.7359 714.9


 (3.17)

C =

[
−64.75 −18.78 46.79 −31.42
−29.62 −37.28 13.03 −5.59

]
(3.18)

D =

[
0 0 0 0
0 0 0 0

]
. (3.19)

3.3.2 Process model for MPC

After analysis of existing data sets it was decided to remove input “Boiler
water flow” from the model identification for MPC as its variations in data
set are not sufficient to identify its impact on process output. Water flow
value does not change most of the time thus it is impossible to identify its
dynamics adequately. Figure 3.2 shows typical water flow measurements,
where it is seen that data is noisy, but it does not change significantly for
many days. Its value is set manually by the operators as the set point for
the PI controller that keeps it on the defined level.

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

30.10.2015 0:00 31.10.2015 0:00 01.11.2015 0:00 02.11.2015 0:00 03.11.2015 0:00 04.11.2015 0:00 05.11.2015 0:00 06.11.2015 0:00

Boiler water flow

Figure 3.2: Typical example of water flow variations in the boiler.

At the same time output “Boiler outlet temperature” depends on water
flow, so it was also removed from the identification. Final decision was to
identify multiple input single output (MISO) process model.
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Process model was identified using data sets collected from the process
in the period from October 10, 2015 to November 6, 2015, 6199 samples.
500 iterations are used for PEM method. Data sampling interval is 1 minute
which is enough to obtain a reliable representation of such a slow process.
Resulting model is:

A =




0.5496 −0.1142 0.1092 0.2782 0.3772
−0.3363 0.7316 −0.136 0.1998 0.2838

0.263 0.3913 0.6847 0.1086 −0.395
−0.2257 −0.4801 0.4038 0.7623 0.09956
−0.2506 −0.2 0.4444 −0.08627 0.4433




(3.20)

B = 10−5 ·




−4.466 1.966 −1264
−2.6 −1.646 −664.4
1.104 −1.927 −307.5
−7.316 1.379 917.4
−3.167 1.794 415.2




(3.21)

C =
[
−38.37 43.62 −30.97 −46.53 25.82

]
(3.22)

D =
[
0 0 0 0 0

]
. (3.23)

This model will be used for the design of an MPC described in the next
section.

3.4 Conclusion

Good process model is essential for model based control design. While mak-
ing a decision about the type of model to be used for model based control it
is very important to find a balance between complexity and efficiency. Use
of nonlinear model causes the whole range of complicated problems that are
existing in the stage of theoretical investigation at present days. We tried
also to make neural network nonlinear model of the process [65] that behaved
very similar to the real process in the operating area in which it was iden-
tified, but it was not able to provide feasible prediction outside the area, so
its use required a separate long-term study. As the purpose of this work is
to design a controller suitable for the whole range of real existing processes
while simultaneously avoiding the complications arising from nonlinear mod-
eling, it was decided to try linear model first. The resulting model showed
good performance in the control of a nonlinear process of heat production.
These processes are slightly nonlinear, so their behavior does not change sig-
nificantly while traversing from one operating area to another. That is why
using a linear model with a state observer is enough to predict short term
process behavior in the whole operating range.

39





Chapter 4

Algorithms for Model
Predictive Control

4.1 Overview

In MPC we aim to minimize a cost function defined as [42]

V (k) = ||Z(k)− T (k)||2Q + ||4U(k)||2R, (4.1)

where Z(k) is the outputs prediction vector within prediction horizon Hp,
T (k) is set points trajectory within Hp and 4U(k) is vector of process input
moves (changes) within control horizon Hc. Z(k) is calculated as:

Z(k) = ΦX(k), (4.2)

where

Φ =




C 0 · · · 0
0 C · · · 0
...

...
. . .

...
0 0 · · ·C


 .

The predicted states can be written as

X(k) = Ψ̂x(k) + Υ̂u(k − 1) + Θ̂4U(k), (4.3)

where

X(k) =




x(k + 1|k)
x(k + 2|k)

...
x(k +Hp|k)


 , 4U(k) =




4u(k|k)
4u(k + 1|k)

...
4u(k +Hu − 1|k)


 ,
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Ψ̂ =




A
A2

...
AHp


 , Υ̂ =




B
AB

...∑Hp−1
i=0 AiB


 ,

Θ̂ =




B · · · 0
...

. . .
...∑Hu−1

i=0 AiB · · · B∑Hu

i=0 AiB · · · AB + B
...

...
...∑Hp−1

i=0 AiB · · · ∑Hp−Hu

i=0 AiB




.

Matrix Ψ̂ is used to calculate the effect of current states to the states in the
future within the prediction horizon Hp, Υ̂ is the matrix used to calculate
the effect of the latest process inputs to the future states and Θ̂ is the matrix
used to calculate the effect of future input changes to future states. Hu is
control horizon (number of control actions into the future), u(k + i|k) = 0
for each i > Hu with Hu ≤ Hp. Thus:

Z = Ψx(k) + Υu(k − 1) + Θ∆U(k), (4.4)

where Ψ = ΦΨ̂, Υ = ΦΥ̂ and Θ = ΦΘ̂.
Tracking error between free response and tracking trajectory in this case

can be written as

E(k) = T (k)−Ψx(k)−Υu(k − 1), (4.5)

where free response means the prediction of model outputs for the whole
prediction horizon, if 4U is always zero vector—no input moves assumed.

After this the cost function can be expressed:

V (k) = ||Θ∆U(k)− E(k)||2Q + ||4U(k)||2R. (4.6)

This can be brought to the form (refer to [42] for details):

V (k) = const−4U(k)TG+4U(k)TH4U(k), (4.7)

where G = 2ΘTQE(k) and H = ΘTQΘ + R.
To find the optimal 4U(k), we set the gradient of V (k) equal to zero,

thus obtaining

∇4U(k)V = −G+ 2H4U(k) = 0. (4.8)

Then the optimal future input changes are given by

4U(k)opt =
1

2
H−1G. (4.9)
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Once the optimal process inputs are computed, we only take the first
element, apply the control action, and send it to the DCS. Once this step is
finalized, we apply the same concept in a receding horizon strategy.

Matrix inverse should not be computed directly in (4.9), as H can be
ill-conditioned due to minor difference between process values in consequent
prediction steps [42]. Matrix pseudo-inversion could be utilized in this case,
but the task can become too computationally demanding because in case
of long control horizon and many controlled inputs H has high dimension.
E. g., singular value decomposition is computationally expensive and is not
feasible in real-time applications.

At the same time solution of equation Ax = y is very efficient with QR-
decomposition of matrix A [23]. Matrix A is decomposed onto orthogonal
matrix Q and triangular matrix R. For orthogonal matrix Q−1 = QT . So,
the equation can be modified to the form:

Rx = QT y, (4.10)

which is easily solvable triangular system of linear equations.

For QR-decomposition a Housholder algorithm can be used, which solves
the problem in a very efficient way [23].

4.2 Augmented model for MPC

As we have different process model for simulation and for the MPC design, it
is not possible to guarantee zero tracking error. If we do not measure the real
output and do not restore model states respectively, then an offset appears
between MPC model output estimation and the real process outputs. When
the model output is close to the set point, real process output values can
differ significantly. If the model is not accurate, MPC finds a steady-state
point where it estimates that no updates to the control law are necessary
and the process output should reach the set point without any additional
actions. However, this is not the case, and the process does not converge to
the set point because it has different behavior than the one predicted by the
model of MPC. As a result, a static control error appears.

The following approach can be used to solve this problem. We augment
the model with extra states that will compensate the offset in each cycle of
process states and outputs estimation [68]. This augmented model has the
following form:

Â =

(
A 0
C 0

)
, B̂ =

(
B 0
0 −I

)
, Ĉ =

(
C −I

)
, (4.11)

where I is identity matrix and 0 is zero matrix of suitable dimension.
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Extra states and extra inputs are added to the model. Extra input vector
Uext consists of measured process outputs. Extra states are calculated as
follows:

Xext = CX − Uext, (4.12)

where X is a vector of original states, Xext is a vector of offsets between
model outputs and real measured process outputs. It is calculated every
execution cycle and subtracted from the original model output vector using
−I in matrix Ĉ.

Unfortunately, the same model cannot be used to calculate the optimal
process input due to problems with scaling. Coefficients of augmented states
(matrix C) and inputs (identity matrix) are significantly higher than coef-
ficients of original states (matrix A) and inputs (matrix B). While making
prediction MPC multiplies states with matrix Â and inputs with matrices
Â and B̂ many times. This leads to domination of augmented states in pre-
diction calculation thus masking the effect of original states and inputs. To
avoid this, we use another approach. For prediction, we augment the model
in a different way:

Ã =

(
A 0
0 I

)
, B̃ =

(
B 0
0 0

)
, C̃ =

(
C −I

)
. (4.13)

In this case offset is fixed for all prediction steps and any effect of the
original input change will be correctly transferred to the model output. This
model is much better for prediction than the original one, because it does
not suffer from output offset, maintaining the original model behavior.

4.3 Kalman filter as state observer

As it was tested later, model augmentation works well, when process model
is accurate enough and model prediction error is within 5%. When the model
dynamics are identified well enough to predict output move direction, but
prediction error is around 20%, then static part of augmented model starts to
influence the MPC output too much reducing accuracy of control. For such
kind of modes, a state observer is needed that restores model states in such
way, so that model could produce output prediction with minimum error.

As we deal with the real system, where all measurements are subject to
white noise, then it is natural to use Kalman filter as state observer.

Using the model 3.1 to predict process output we would need to correct
model states before each prediction is made. The following mechanisms are
used for correction and prediction [33,42,56]:

x̂(k|k) = x̂(k|k − 1) + K(k) [y(k)− ŷ(k)] , (4.14)
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x̂(k + 1|k) = Ax̂(k|k) + Bu(k), (4.15)

where K(k) is Kalman gain and ŷ = Cx̂(k|k− 1). Kalman gain is computed
according to:

K(k) = P(k|k − 1)CT
[
CP(k|k − 1)CT + V

]−1
, (4.16)

where

P(k|k) = [I−K(k)C] P(k|k − 1), (4.17)

P(k + 1|k) = AP(k|k)AT + W, (4.18)

and W is input noise covariance matrix and V is output noise covariance
matrix.

4.4 Constrained MPC formulation

This section is based on [11,42,72].
For example, valves can only operate in the range from 0% (fully closed)

to 100% (fully open), pumps are obviously limited by the rated or achievable
capacity and RPM specification. If produced value is beyond constraints,
then actuator will travel to the limit and stop due to physical reasons, i.e.,
cause a saturation effect. In some cases this control action is not favorable. In
Figure 4.1, an optimal value of unconstrained controller uu is above maximum
possible value, but real optimal value considering constraints uc could be
different than maximum limit of manipulated variable.

In case of MPC it is possible to set constraints on input moves 4u, input
value u and output z:

4umin ≤ 4u(k) ≤ 4umax (4.19)

umin ≤ u(k) ≤ umax (4.20)

zmin ≤ z(k) ≤ zmax (4.21)
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Figure 4.1: Constraints on manipulated variable and optimality

at any time moment, where xmin is minimum limit and xmax is maximum
limit of respective variable.

As controller produces optimal input moves, then we are interested to ex-
press all Equations (4.19), (4.20), (4.21) through4u. Let’s defineHu−dimensional
limit vectors 4Umin, 4Umax, Umin, Umax, Zmin, Zmax. The whole control
horizon constraints can be expressed as:

4Umin ≤ 4U(k) ≤ 4Umax (4.22)

Umin ≤ U(k−1) + EI4U(k) ≤ Umax (4.23)

Zmin ≤ Θ4U(k) + Ψx(k) + Υu(k − 1) ≤ Zmax (4.24)

where Hu−dimensional vector U(k−1) is

46



U(k−1) =




u(k − 1)
u(k − 1)
u(k − 1)

...
u(k − 1)



,

and Hu ×Hu−dimensional lower triangular matrix:

EI =




1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 · · · 0
...

...
...

. . .
...

1 1 1 1 1



.

Combined inequality has the form:




I
−I
EI

−EI

Θ
−Θ



4U(k) ≤




4Umax
−4Umin

Umax − U(k−1)
−Umin + U(k−1)

Zmax −Ψx(k)−Υu(k − 1)
−Zmin + Ψx(k) + Υu(k − 1)




(4.25)

Finally taking into account Eq. (4.7) we get a problem in the quadratic
programming form:

min
θ

1
2θ
THθ + hθ

subject to:

Ωθ ≤ ω.

This type of problems has standard solutions methods. Most popular are
active set and interior point. In this work interior point method was used as
it was developed later then active set method and is known for the quality
of requiring less computational power.

4.5 Interior point method

Interior point or barrier function method is deeply studied in [9,24,42,48,58,
74,75].

Barrier function method brings problem (4.7):

V (k) = 4U(k)TH4U(k)−4U(k)TG (4.26)
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subject to constraints (4.25) to the form with no explicit constraints. Modi-
fied cost function is:

V (k) = 4U(k)TH4U(k)−4U(k)TG+ µBf (4U(k)), (4.27)

where

Bf (4U(k)) = −
Hum
Σ
i

(ln (4Umaxi −4Ui(k)) + ln (4Ui(k)−4Umini)) .

Bf is a logarithmic barrier function. i refers to ith element of vectors
4Umax, 4Umin and 4U(k). There are also other types of barrier functions,
but the logarithmic function is one of the most convenient to use with stan-
dard optimization techniques. Function (4.27) is smooth, so it can be solved
with various Newton’s methods. As µ → 0, the solution of (4.27) tends to
the solution of (4.26) [74].

With application of Newton’s method update of 4U results in

4U = 4U − αH−1g, (4.28)

where g is gradient vector of the cost function, H is Hessian of the cost
function and α is a scalar to ensure reduction of the cost function. Each
element of the gradient vector take the form

g(i) = H{i,:}4U(k) +G(i)

+
µ

4Umaxi −4Ui(k)
− µ

4Ui(k)−4Umini

, (4.29)

where i refers to ith element of gradient vector g and vector G, H{i,:}refers
to ith row of matrix H. Hessian matrix H is

H = H + µD, (4.30)

where D is diagonal matrix with the following elements on the diagonal:

D{i,i} =
1

(4Umaxi −4Ui(k))2
− 1

(4Ui(k)−4Umini)
2 . (4.31)

Gradient and Hessian expressions are only true, if 4U(k) is feasible.
That requires starting point for the optimization to be within limits, which
is simple, if for example only input constraints are used:

4u(k) =
umax + umin

2
− u(k − 1), (4.32)
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4u(k + i) = 0, i = 1, ...,Hu − 1. (4.33)

In case of output constraints feasible starting point could be missing,
if these constraints contradict each other. In these circumstances output
constraints should be softened — moved enough for feasible point to appear.
Output constraints are softened due to the reason that input constraints are
normally related to physical limitations of the process making their softening
impossible [42].

For interior point method implementation we need also scaling factor ν ∈
(0, 1) to prevent constraints violations, positive integer k to define number
of iteration steps, barrier scaling factor µ > 0 to define initial barrier size
and weighting factor ζ to decrease µ in each iteration. The closer ν value is
to 1, the close 4u(k) goes to the limit. Scaling factor µ is needed prevent
jump out of feasible region at the beginning of the algorithm execution.
After assignment of initial value (e. g. 10) it decreases in each iteration of
algorithm thus approaching problem (4.27) to the problem (4.26). Simple
example of barrier function implementation is depicted on the picture 4.2.

0 min U(k)

V(k)

max

Figure 4.2: Limitation with barrier function.

The procedure of the interior point algorithm is as follows.

1. Initialize the control action via (4.32) and (4.33).

2. For j = 1 to k

3. Compute gradient vector g via (4.29).

4. Compute Hessian matrix H via (4.30).

5. Compute an estimation of 4U update ρ = H−1g.

49



6. For i = 1 to Hum

7. If ρ(i) < 4Ui(k)−4Umax then

8. ρ(i) = ν (4Ui(k)−4Umax).

9. End If

10. If ρ(i) > 4Umin −4Ui(k) then

11. ρ(i) = ν (4Umin −4Ui(k)).

12. End If

13. End For

14. Optimize α value to get minimum value of the cost function after
input move update.

15. Update input move 4U = 4U − αρ.

16. Update the barrier weight via µ = ζµ.

17. End For

Inversion of Hessian matrix H in step 5 is not needed [42] as ρ can be calcu-
lated with QR-decomposition with use of Householder algorithm in turn [23]:

Hρ =g, (4.34)

QRρ = g, (4.35)

where Q is orthogonal (QT = Q−1) and R is upper triangular. So, we have:

Rρ = QT g, (4.36)

Rρ = ĝ. (4.37)

After this it is straightforward to compute ρ from:



R11 R12 · · · R1n

0 R22 · · · R2n
...

...
. . .

...
0 0 0 Rnn


×




ρ1
ρ2
...
ρn


 =




ĝ1
ĝ2
...
ĝn


 . (4.38)

After steps 7-12 we have ensured that ρ value does not violate the constraints.
It is possible to find the most optimal value of α by taking α−gradient from
the unconstrained cost function and equate it to zero. From (4.26) we have:
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V (k) = 4 (U(k)− αρ)T H (U(k)− αρ)− (U(k)− αρ)T G, (4.39)

dV (k)

dα
= 2αρTHρ− 2ρTH4U + ρTG = 0, (4.40)

α =
ρTG− 2ρTH4U

2ρTHρ
. (4.41)

To prevent constraint violation we have to limit α to the range [0, 1] .
If unconstrained MPC optimal solution is located beyond constrains, then

in each iteration of interior-point method we decrease value of µ and approach
value of constraint, but do not cross it.

4.6 Conclusion

In this chapter constrained MPC algorithm was discussed, where Interior-
Point method is used to solve the quadratic programming problem. MPC
algorithm is fully described for unconstrained and constrained cases. It is
shown that it is possible to start search for solution from guaranteed feasible
point and remain in feasible region.

The main contribution of this chapter is deep analysis of various sources
on MPC theory and practice to develop an algorithm for real implementa-
tion suitable for our needs. The algorithm structure was taken from [74],
but it was modified using [10, 11, 42, 47, 48] to get a simple, but efficient
implementation.

In the following chapter the implementation of this algorithm in Java
programming language will be described.
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Chapter 5

Development of the MPC
Software Application and the
Simulation Environment

5.1 MPC application

5.1.1 Overview

MPC history started with a practical implementation as a commercial so-
lution. Today there is a choice of commercially available MPCs. Several of
the better known makes were listed in Chapter 1. The problem with the
implementation of such a solution to small-scale processes in a small country
is high cost. At the same time, benefits of model based control are not ob-
vious for plant owners before implementation. This prevents MPC use even
in these cases, where achieved benefits could justify possible costs. At the
same time there are also some freeware tools available that provide MPC
functionality. GenOpt based MPC tool [12] and GRAMPC tool [31] can
be cited as examples of such tools. Related publications describe tools’ de-
sign principles with test implementation to exemplary processes simulated in
MATLAB. An attempt to implement these tools to real-life DCS and pro-
cess would require significant efforts for building interfaces between MPC
and the control system and configuring interconnections. As we are target-
ing lightweight, simple, but efficient implementation, a decision was made to
design own MPC tool suitable for needs of current thesis context [68].

5.1.2 Application structure

Designed MPC is implemented in Java programming language as a command
line application. As a first stage, we have chosen to implement the uncon-
strained case. The constrained case requires further programming in Java,
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and the implementation of an interior-point method, see e. g. [54], which
makes the Java programming more complex. After unconstrained solution
was implemented and tested, application was developed further to include
constraints.

Java is not the most efficient programming language [43, 71], but it is
convenient, reliable and supports cross-platform execution and therefore has
become a standard programming language for developing enterprise appli-
cations. Cross-platform compatibility can be useful in the future, providing
more freedom for a real process control implementation. Java program is
compiled to the platform independent byte code that is executed in platform
dependent Java Virtual Machine (JVM). This type of execution requires
compilation from byte code to machine code in real-time. Each application
method is compiled on the fly when it is called by the program. This can
cause processing overhead for real-time compilation. Java uses Jast-In-Time
(JIT) compilation to avoid it. JIT compiles program methods once during
program execution when they are called and stores them in memory for later
use. As our program is cyclical, processing overhead for online compilation
should be minimal.

We need an MPC application that supports the following functions:

• read configuration from the file,

• communicate with the process via Modbus/TCP,

• calculate optimal inputs for the process,

• interact with the user via command line interface (CLI).

As Java is multi-threading programming language by its nature, it is possible
to build these functions as separate threads. Application structure is shown
in Figure 5.1. The main thread that starts all other functions is created first.
It starts separated threads for the functions listed in Table 5.1.

Table 5.1: MPC java application threads.

Thread Function
1 Command line scanner to read user’s commands
2 Modbus/TCP interface to communicate with DCS
3 MPC to calculate optimal process inputs

MPC thread reads process model and MPC parameters from an XML
configuration file.

Modbus thread reads its configuration parameters from another XML
file. Modbus implementation is based on Jamod library [27].
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The CLI shows model, MPC parameters and Modbus parameters loading
status after the application has started up. By default it does not provide
any other information, but it accepts a variety of commands from the user to
force the application to write useful information to CLI, such as calculated
optimal process inputs, prediction vector, process input moves, etc.

When the application is running, it reads process values from the DCS
via Modbus interface, calculates optimal process input and writes it back to
the DCS via Modbus.

MAIN 
THREAD

MPC 
THREAD

Modbus/TCP 
THREAD

USER 
INTERFACE 

THREAD

XML 
CONFIGURATION

DCS XML 
CONFIGURATION

CONSOLE 
WINDOW

Figure 5.1: MPC application structure

5.1.3 Application highlights

A real-time multi-thread application is created that performs all required
functions to manage optimal process control:

1. Communication with DCS;

2. MPC algorithm execution with predefined period;

3. Interaction with the user.

Due to use of popular Modbus/TCP protocol it is possible to apply MPC
control to almost any control system, where advanced control techniques are
not embedded. As application is written in Java it is executable on the OS
platforms commonly used in industry: Windows or Linux. Addition of MPC
control to any existing system is simple and straightforward.
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5.2 Simulation environment

5.2.1 DCS overview

In this work Valmet DNA DCS was used for simulation environment. This
DCS is widely used in industry world wide. It is has been in steady devel-
opment since 1979 utilizing modern IT-technologies at all times. It has full
scope of functionality of modern control systems such as process control on
lower level, supervisory control and data acquisition system (SCADA), high
level control and many others. It also supports execution of Java functional
blocks, but in this case this option was used only for process modeling, but
not for MPC application to keep its platform independence.

5.2.2 Simulation environment design

After process model has been obtained, a simulation environment is devel-
oped to transfer the results to a real-life application. Simulation is built with
Java function block of DCS software. A simple Java code block is created. It
reads matrices A, B and C of the state-space model as well as process inputs
values and calculates model states and outputs using (3.1).

Without loss of generality, we initialize the model with x(0) = 0. Model is
run in DCS run-time environment in a 4-second cycle. Simulation is carried
out 15 times faster than real process intentionally to make testing faster
without need to wait for long process transients.

MPC application is developed in Java using Eclipse development envi-
ronment in Debian Linux. It uses TCP/IP network to communicate with
DCS and can be located in the same computer with the process simulation
or in any other accessible through the network. DCS process simulation
runs under Windows OS. After a functional version of MPC application was
released, it was used on the same computer with DCS process simulation.

To make simulation environment ready for testing we need to only prepare
communication with the MPC application using Modbus/TCP interface that
is supported by DCS. Related configuration was prepared with DCS role in
communication as slave and MPC application as master.

After MPC application has started, it shows to the user that all the
parameters (Modbus/TCP settings, model, MPC settings) have been loaded.
As the applications acts as Modbus master, it sends requests to the configured
slave. In case of no response, the application quits informing the problem to
the user. If slave (DCS process simulation) is also configured correctly and
is on-line, then communication is established.

It is also important to secure the control system from communication
problems or any MPC application functionality issue. For these purposes
keepalives are used, binary signals that switch their values after a predefined
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period of time. One signal is generated by the Modbus thread every 2 sec-
onds, another one by the MPC thread in each execution cycle. These signals
are also sent through Modbus interface to DCS. The later has a timeout 5
seconds for Modbus thread signal and 10 seconds for the MPC thread signal.
Time counter of each signal is reset when related signal changes its value. If
timeout period is exceeded in any counter, DCS diagnoses MPC application
fault, freezes manipulated input value and gives an alarm to the operator.

MPC application reads all relevant process variables listed in Table 3.1
as well as output set points. All of these variables are used to calculate
current states of the model (including offset compensation in current step)
and optimal process inputs for the next cycle.

In this case only Input 1 is controllable. All other process inputs are
measurable disturbances. MPC application calculates the optimal value for
the gas flow only and sends it to DCS via Modbus interface.

DCS graphical user interface is shown in Figure 5.2. Basic process lay-
out is depicted on the display. All inputs and outputs are placed on the
positions where they are measured in the process. Process inputs that are
not controlled—water flow through the boiler, water flow through the plant
and boiler inlet temperature—can be modified by the user directly simulat-
ing process disturbance (in reality these are modified by other parts of the
process). Process outputs—boiler outlet temperature and plant outlet tem-
perature—are calculated by the simulation model in DCS. These are shown
at the bottom of the corresponding value boxes. Topmost parts are relative
set points that can be modified by the user.

Trends for the outputs and for the controllable input are added to facili-
tate the understanding of the results. These are updated in real time.

Process simulation can be operated in three modes. Mode 1 is manual.
Operator can modify process inputs (including gas flow) and observe resulting
outputs values. For mode 2, PI controller is used in DCS. Related data box
is right under the gas pipe on the display. PI controller is driven by the plant
output temperature error signal and controls gas flow to keep temperature
close to set point. All other inputs can be modified by the user. The controller
is made only for simulation purposes. This loop does not exist in the real
process control system. PI controller was tuned using direct synthesis method
[6]: kp = 1.24, ti = 10. In mode 3, gas flow value is calculated by the MPC
application.

In the current work, only the plant output temperature is of interest.
There is no need to control boiler output because we assume that this output
is maintained within the normal range of operation (between 80 to 140°C).
In the real world, the boiler is operated in conditions where its output is in
the range of 85 to 125°C. Because we control a slow process, it is not possible
that the output goes outside of the normal operating condition without the
operator seeing it. If this happens, then the operator can take corrective
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Figure 5.2: DCS user interface.

actions. Of course, MPC including constraints would be ideal in order to
take these limitations into account. Nonetheless, unconstrained MPC can
also operate in these circumstances. We keep boiler output temperature in
the model for later use in the future continuation of this work.

To tune the MPC strategy, we consider that the plant temperature output
is the main point of interest. Weights for Output 1 (boiler output temper-
ature) and for Output 2 (plant output temperature) are set to 0.1 and 350,
respectively. These values are found by trial and error.

We also need to penalize input changes to prevent overreaction in the gas
flow that makes the whole system unstable. We find that a suitable weight
for this case is 0.1.

Testing of MPC in the simulation framework will be performed by giving
an extreme disturbance that cannot happen in the real world. By doing
this, we want to assess whether the MPC application is able to stabilize the
process in such extreme conditions. In case of success, there is a high chance
of having a stable control in the real process. The disturbance is chosen as a
instant decrease in the boiler inlet temperature by 2°C. In real operations,
this value only changes around ±0.2°C/min.

Simulation results are shown in Figure 5.3. Also DCS PI-controller result
is added to the trend. We can see that PI-controller behavior is similar to
MPC result, but MPC shows a quicker reaction.

The main purpose of this work is to assess whether MPC is capable of
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Figure 5.3: Simulation results

making the closed loop stable, and to overcome the possible difficulties in the
implementation of the MPC strategy in the real world. We also performed
other tests with other large-scale disturbances. In all those cases, we obtained
a stable closed loop.

5.2.3 Simulation environment highlights

Simulation environment is made on the base of real DCS, that provides con-
trol system functionality, Modbus/TCP interconnection and also emulates
process dynamics on the base of state-space model. Communication between
MPC application and DCS was established using Modbus/TCP protocol via
common Ethernet network. In real industrial process DCS is connected to the
process through sensors and actuators, but communication between MPC ap-
plication and DCS remains the same. So, in this simulation environment it is
possible to test full functionality of MPC application before implementation
to the real process. In the next chapter real process control implementation
will be described.
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5.3 Conclusion

Matlab MPC toolbox is a commonly available application to study MPC in
practice. It provides good opportunities to test MPC algorithm functional-
ity with all kind process simulations and also real processes (through Data
Acquisition toolbox) in laboratory conditions. Licensing issues and powerful
hardware demand prevent its easy implementation to real industrial process.
This was the reason to apply significant efforts to develop light weight MPC
application free of licenses that can be applied to almost any existing control
system based on DCS of PLC as almost every industrial controller supports
Modbus/TCP protocol nowadays. Testing in simulation environment based
on real DCS software showed that resulting application is applicable for real
process control. Results of real implementation will be described in the next
chapter.

Still, the current application has many drawbacks that can prevent it
from easy use in the future as it is not yet user friendly and requires a lot
of manual work to prepare it for implementation. So, there are few obvious
directions for further development:

• Develop web based user interface that provides initial MPC configu-
ration and further maintenance in a user friendly manner locally or
remotely over network connection;

• Implement model identification functionality inside application. At the
moment model is identified externally in Matlab.

• Previous item will require connection of database to collect process
data for identification.

• At the moment only one MPC thread is utilized in the application. In
the future application could support many threads to implement many
MPC controllers to one control system.

• Fuzzy controller module could be added to the application in the future
to provide control for processes with unmodeled dynamics from the
same software.

• Modbus/TCP is well supported interface, but almost obsolete nowa-
days. Very soon implementation of more modern interfaces will be
required. OPC UA interface support could be added to the software in
the future.

Nevertheless all these desirable extensions do not prevent one from imple-
menting existing application’s MPC functionality to the real process already
now. The next chapter will give detailed description of the MPC real life
implementation.
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Chapter 6

Application of MPC to the
Industrial Process

6.1 MPC implementation phases

As was written earlier, typical way of MPC implementation to the real pro-
cess nowadays includes [15]:

1. Pretest and preliminary MPC design.

2. Plant testing.

3. Model and controller development.

4. Commissioning and training.

In the pretest phase this process and its existing PI control were investigated.
View Chapter 1 for details of existing PI controller.

Lower control loops of the process were tuned sufficiently well solving
control tasks in a proper manner. Retuning of upper control loops of the
cascaded PI controller to achieve better performance would require too many
efforts and separate study. As it was decided to go on with MPC retuning
of existing upper loops was skipped.

The second phase of MPC implementation requires plant testing to collect
process data for model identification. As plant DCS includes information
system with a database for process data collection, then all necessary data
was acquired with these tools. Plant process was running with different loads
for many weeks. Collected data with sample time of 1 minute was used for
offline model identification.

After process model was identified and MPC designed and tested first
in Matlab/Simulink software [66] and then in simulation environment as
described in the previous chapter [68], it was commissioned to the process
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as the final phase of the implementation. Further, the application of both
unconstrained and constrained variants of MPC control is verified with the
real process in the loop. Finally, the obtained results are discussed.

6.2 Application of unconstrained MPC to the real
process

The power plant process control system has a process network, where con-
trollers, operator stations, engineering and information servers are combined
into one communication segment. As engineering server is used only in con-
trol modifications, it does not have permanent computation load, so it is
natural to use it as the running environment for the MPC application. The
server meets the hardware requirements to run the developed MPC Java
application.

One of DCS controllers was configured to be a Modbus slave (server),
while MPC application was a Modbus master. After proper configuration
of both ends, communication between MPC and controller was established.
The same communication applications with minor modifications were loaded
to the controller as were used in simulation environment.

Existing gas flow controller of the boiler was reconfigured to use one
more source of set point — computed by MPC. Selection button was added
to operator displays, so it became possible to select between MPC and old
PI controller.

The first version of MPC application didn’t include handling of con-
strains. It was first implemented to the process with use of augmented model
(See Section 4.2) in the spring of 2017. As it was the very end of heating
season there was no time to test application thoroughly. It worked in process
control only a few hours, but during this time it showed satisfactory control
performance (Figure 6.1).
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Figure 6.1: Process control with augmented model.

62



The model described in Subsection 3.3.1 having four inputs and two out-
puts was used to design MPC that time. Basic model prediction error was
in the range 2− 4°C, so augmented states could fully compensate it making
augmented model suitable for MPC design without use of state observer.

Before the start of the next heating season MPC application was extended
with constrains handling functionality. Also, the model was replaced with
three inputs one output structure. Use of augmentation was tested with
this model as well, but the model error peaked at about 20°C. In these
circumstances MPC performance was not satisfactory providing control error
up to 2°C. Model augmentation was replaced with Kalman observer for the
future test.

Model augmentation is easier to use than an observer, so it could provide
certain benefits in MPC implementation, but it requires a little bit more
study and testing to confirm its usability.

6.3 Application of constrained MPC to the real pro-
cess

In January 2018, a new version of MPC was started with the parameters set
in simulation environment. It took two hours to fine tune these for better
performance in real conditions. Suitable tuning parameters were decided as
follows:

Hp = 12, (6.1)

Hc = 3, (6.2)

Q = diag(400, 400, 400, 400, 400, 500, 500, 500, 500, 600, 600, 600), (6.3)

R = diag(0.01, 0.01, 0.01), (6.4)

where diag(x) is diagonal matrix with parameters x on the main diagonal.
There was only one input constraint that could be useful for process

operators—gas minimum flow should not be below 3700 m3/h. If gas flow
goes lower, then boiler automation will turn off one of the burners due to low
load. Later, a large number of preparations by the operator is required to
turn the burner on again, so operators prefer to limit minimum load, even if
the plant output will be higher than set point for a short period of time.

Operators were instructed to follow controller performance and switch it
off, if its behavior is deemed inappropriate, i.e., leading to poor performance
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(deviations from the set point more than 2°C and inability of the controller
to stabilize the output within short period of time, e.g., one hour). The
controller was left to run in automatic mode for some days in different process
loads.

After evaluation of newly collected data, it became clear that the linear
model does not work satisfactory in a long prediction horizon, as prediction
mistakes are too significant and result in the degradation of control perfor-
mance. Also, tuning parameters of matrix Q are too rapid making process
output fluctuate on lower loads.

New parameters were set as follows:

Hp = 8, (6.5)

Hc = 2, (6.6)

Q = diag(200, 200, 300, 300, 400, 500, 800, 800), (6.7)

R = diag(0.01, 0.01). (6.8)

With new parameters MPC performance was satisfactory. Deviations
from the set point were in the range 1°C. Only significant disturbances
(such as plant flow increase for 400m3/h within less than an hour time, see
Figure 6.2 for details) caused controlled variable deviate more than 1°C.

6.4 Implementation results

It is possible to highlight following results of MPC implementation to control
of the district heat plant:

• New controller provides satisfactory control on the whole range of boiler
operation starting from lowest loads 15–20 MW and to the full load of
116 MW. This is a significant improvement compared to existing control
that is usable only starting from 40 MW load. On lower loads manual
operation was used.

• On comparable loads new controller has twice better performance than
existing controller. For 7000 data samples sum of square errors is al-
most twice higher for PI controller: 1534.63 against 3624.35.

• MPC handles disturbances better as it can predict disturbance effect
on output and starts to act earlier than PI controller to mitigate con-
sequences (as illustrated in Figure 6.3).
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• Overall MPC controller is suitable for such kind of power production
processes where multivariable model can be identified with all measur-
able process values.

Figure 6.3 shows comparison of MPC (green line) and PI (red line) controlled
process on comparable power production. It is seen that in approximately
the same operating conditions MPC controlled process output has smaller
output deviation from the set point. Also disturbance (plant flow significant
change) is handled better in MPC case.
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Conclusions

This work was inspired by observation of current state of industrial automa-
tion with dominating PID control law even in such loops, where its func-
tionality is insufficient for solving control tasks. Nevertheless, PID controller
can handle majority of control tasks in industry, there are loops with out-
put delays and multiple inputs, where PID cannot provide suitable solution.
Normal way to proceed in these cases is to build a more complicated cascade
PID controller with additional logic and calculations. This construction is
hard to tune. At the same time control performance of such controller is not
sufficient. This kind of process and cascade controller were selected in real-
life industry of Estonia to study possibility for use of more efficient control
techniques.

Model based control is very suitable for such cases, as it is able to han-
dle multiple input multiple output process control loops by its nature thus
overcoming delay challenge by prediction of process output beyond delay
horizon. There are also certain limitations for use of model based control
in situation, when process cannot be accurately modeled. That is why two
types of processes were considered in this study.

Initially, a process type with unmodeled dynamics was considered, where
accurate modeling is not possible due to missing measurements or other pro-
cess uncertainties prevent us to build a model capable of prediction of the
process behavior with sufficient accuracy. Another advanced process control
technique was implemented for this case—fuzzy control is an acceptable sub-
stitution for model based control in such cases. A real-life process—small
biofuel boiler house—was considered as an example of the process with un-
modeled dynamics, where fuzzy control was successfully implemented. Un-
fortunately, simple enough fuzzy control for smaller loops changes to com-
plicated one as the number of controller inputs increases, because number of
applicable rules grows in geometric progression. Therefore, it was decided to
proceed with processes with modeled dynamics in this study.

Processes with modeled dynamics fit well into model based control. A
real-life industrial process was selected for model based control applica-
tion—a combined heat power plant in Tallinn, Estonia. It was proposed
to control plant heat output with MPC instead of existing cascade PI con-
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troller that was not able to handle process disturbances due to slow control
dynamics. There is a stationary part of the process—waste to energy unit
that produces normally constant amount of electricity and heat. Plant out-
put is adjusted to district heat network demand by invoking an additional
water boiler working on natural gas fuel. Gas flow was chosen to be the con-
trolled variable for MPC while other process inputs (plant water flow, boiler
water flow and boiler inlet temperature) are seen as measured disturbances.
Boiler outlet temperature and plant outlet temperature were selected to be
controlled process outputs. Process was thoroughly studied before modeling.
During the study, several attempts were made to identify and test a MIMO
model. Unfortunately, boiler water flow was not manipulated before (it was
constant most of the time), so collected data did not include suitable data
sets to identify effect of this variable on process outputs. It is clear from
process physics that the boiler water flow has only effect on boiler output
temperature, so it was decided to exclude these variables from the identifica-
tion of the model. Final model had 3 inputs and 1 output. Prediction error
minimization method was used to identify industrial process model. Model
predictive controller was built on the base of the model. It was first tested in
simulation environment specifically created in real control system software
to make tests as close to reality as possible.

After successful tests in simulation, MPC was applied to real process con-
trol and it showed much better results than existing PI controller provided.
Squared deviation from the set point was decreased more than twice with use
of MPC. There were chosen few data sets of 7000 samples from the process
data before implementation and after implementation. In all comparisons
there was approximately the same result—squared error of MPC on the level
1500 versus squared error of PI controller on the level 3500. Another benefit
of MPC implementation was observed in the fact that controller’s reaction to
disturbances was faster due to prediction function of the new solution. Since
the plant’s heat output is hot water with certain temperature, its set point
is kept in the middle of operation specification to guarantee this tempera-
ture to be in specification even under disturbance effect. With more precise
and reliable control it is possible to move set point down thus reducing use
of natural gas simultaneously with producing output of the same quality,
which is essential in modern world of sustainable and environment friendly
technologies.

Use of standard interface for the communication allows to use this MPC
not only with certain control system, but with any existing PLC controlling
any heat production process. This study showed in practice benefits of used
model based techniques for process control that can be extended to any
other similar process. Required efforts to do this include process model
identification, configuration of the communication interface between MPC
application and process control system and MPC parameters tuning.
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Two typical cases of industrial heat production were considered in this
thesis, where implementation of advanced process control brought certain
benefits for production quality. There are hundreds of other processes of
similar type, where the same of even bigger improvements could be achieved.
At the same time process owners often have no idea about possible bene-
fits. Typical practice in this field is to offer APC solution to process owners
for free, while charging customer after performance improvement has been
implemented, documented and started to bring the profit to the process
owner. Development of optimization solutions has a bright future, because it
decreases production costs, increases quality and competitiveness, and gen-
erally goes in line with trends of the new industrial revolution, defined in the
Industry 4.0 specification.

In what follows, the contributions of this thesis are reviewed.

Contribution

• Analysis of existing heat energy production control loops in Estonian
industry for benefits of model based control use. Comparison of pro-
cesses with modeled and unmodeled dynamics was done. Two differ-
ent types of processes were compared — biofuel boiler and gas boiler.
These are the main types of district heat production facilities in Estonia
generating up to 80% of the whole DH heat energy [62].

• Investigation and analysis of existing control systems’ drawbacks influ-
encing the quality and efficiency of energy production. PI controllers
were replaced by advanced controllers to mitigate limitations of PI
algorithm, such as inability to control MIMO loops and poor perfor-
mance controlling loops with significant time delay. Advanced con-
trollers showed better performance in both cases.

• Analysis of advanced control strategies and their applicability to dif-
ferent types of District Heating Plants in Estonia. Selection of suit-
able control technique depending on process characteristics. This work
showed that control quality and thus production quality can be signif-
icantly improved with advanced process control techniques. Squared
deviation from the set point was decreased more than twice with use of
APC. Better control quality reduced operator involvement into process
control thus increasing level of automation of the production facility.

• Mathematical modeling—identification of dynamic system models—and
CACSD based simulation of the process and closed loop control system.
This is a mandatory part of the model based control implementation.
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• Analysis of advanced control strategies based on computer simulations.
Successful simulation tests are required prerequisites for advanced con-
trol implementation to the real process.

• Practical implementation of designed controller, analysis of the results,
and formulation of expert advice towards improving the quality of ex-
isting feedback control loops. In case of the processes with unmod-
eled dynamics, a fuzzy controller was successfully implemented to the
real DH biofuel boiler to keep it in correct operating area all the time
and keep process output close to the set point. For the process with
modeled dynamics model was identified and MPC was designed and
implemented to the real DH gas boiler to reduce deviations from the
set point significantly — more than twice.

Future Research

Current research included identification and model based control of the pro-
cess with just a few inputs and one output. It would be reasonable to continue
study and extend model and control to more inputs and outputs. The pro-
cess includes more loops that could be combined together in one multiple
input multiple output controller that calculates optimized control actions for
the whole plant.

Combination of fuzzy controller and MPC for the same process control
could also be a useful topic for further study. This could produce a robust
MPC, that is in modern trends of MPC research.

It would be also interesting to develop nonlinear MPC in the future and
compare it with linear one to understand, if it provides better performance.
If yes, then does it happen in all processes? Is implementation complexity
compensated with improved result?

There are plenty of questions that arise when we talk about new tech-
nologies in new implementations. New questions will arise after previous
ones will have been answered. This is an infinite way of development.
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Abstract

Advanced Control of District Heating
Processes in Estonia

The current thesis considers the problem of implementation of model
based control to real industrial processes. It covers theoretical preliminaries
for building model predictive controller, its development as a stand-alone
software and successful implementation to heating process in the combined
heat power plant located in Tallinn, Estonia. Before considering model based
control an unmodeled advanced process control was considered to show that
MPC is not able to control processes with unmodeled dynamics, but there
are also other techniques that can handle such cases. Fuzzy controller imple-
mentation to the boiler house located in Rapla town, Estonia was considered
as an example of such solution.

Overall the thesis covers all stages of MPC implementation starting with
process study, MPC design, testing in simulation environment (specially de-
signed for our case in real DCS software), implementation to the real process
and further analysis of results. Implementation was successful showing signif-
icant improvement in process control comparing to previously used solution
based on cascade PI controller. MPC controller was used and tested in the
power plant during heating season of years 2017/2018. Process owner is sat-
isfied with achieved results and is going to use the controller in the future as
well.
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Kokkuvõte

Keskkütte Soojuse Tootmisprotsesside
Juhtimine

Väitekirjas uuritakse matemaatilisel mudelil põhineva regulaatori (MPC)
kasutamist soojusenergia tootmise protsesside juhtimisel Eestis. Töö käsitleb
MPC teooriat, regulaatori realiseerimist eraldi tarkvarapaketina ja edukat ra-
kendamist Tallinnas töötavas soojuselektrijaamas. Töös on uuritud ka mitte-
modelleeritava protsessi juhtimist aruka regulaatoriga. Seda tüüpi lahenduste
näidisena onhägusregulaator rakendatud katla koormuse juhtimiseks Rapla
katlamajas.

Doktoritöö demonstreerib kõiki MPC rakendamise samme alates protsessi
uurimisest, läbi MPC arendamise ja testimise simulatsioonikeskkonnas (spet-
siaalselt selleks loodud reaalse juhtimissüsteemi tarkvara alusel), kuni regu-
laatori rakendamiseni tegelikus tootmisprotsessis ning lõpetades tulemuste
põhjaliku analüüsiga. MPC asendas edukalt reguleerimisahelas seni teatud
puudustega töötanud PI regulaatorite kaskaadi. Autori poolt väljatöötatud
lahendus on kasutuses elektrijaamas alates 2017/2018 hooajast ningjaama
meeskond on tulemustega väga rahul. Regulaatori kasutamine, arendamine
ja sellega seotud uuringud jätkuvad ka tulevikus.
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ABSTRACT: Widely used PID controller has number 

of limitations that do not allow using it effectively to 

solve complicated control issues. The framework of the 

solution is presented in the paper. A nonlinear model of 

a district heat plant boiler is identified by training an 

artificial neural network. The model is used to predict 

the behavior of real plant. 

1 Introduction 
Almost every automation supplier is ready to 

apply advanced control technique nowadays. 

However, PID is the most popular and widely spread 

control method [1]. There are several reasons for that. 

First of all PID is well known and relatively easy, it 

has just few parameters to tune and every control 

engineer knows its principle [2]. On the other hand, 

advanced control techniques require special 

knowledge. Moreover, advanced knowledge is 

needed for its maintenance. This makes advanced 

control implementation extremely expensive 
comparing to traditional PID. 

PID is suitable for controlling simple linear Single 

Input Single Output (SISO) loops, but it is quite weak 

for more complicated processes with several inputs 

and several outputs. Control quality of PID 

significantly depends on the chosen P, I and D 

parameters and moreover can vary on different loads. 

There are also advanced control tasks where it is not 

applicable at all. Such kind of task could be selection 

of the most efficient way to solve control issue. 

In this paper a district heat plant controlled by a 
Distributed Control System (DCS) is concerned. 

Only PI-controllers are used to overcome all control 

challenges. Perspective goal for the control system is 

to be able to select optimal combination of heat 

producing units and control it with the least possible 

fuel consumption and best efficiency. There is no 

possibility to achieve this target with existing control 

methods. 

Current goal is to control district heat water 

temperature on the plant output. The general structure 

of the plant includes three similar water boilers. 

Boilers are connected to pipeline in parallel. There is 
also a bypass line. Boilers use natural gas as fuel. 

Each boiler has three burners. It is possible to control 

gas flow on the input of the whole boiler and air flow 
on the input of each burner (see figure 1). 

 

 
 

Figure 1. Boiler scheme 

 

Boiler can work in base mode (constant load) and 

control mode (variable load). In control mode a 
cascade controller [3], [5] with three PI (Proportional 

Integral) cascades is used (see figure 2). 

 

 

Figure2. Control structure 

Master controller consists of feedforward 

coefficient calculation (CALC2) and PI controller 

(C1) in series with setpoint calculation (CALC1). 
Master controller controls plant output temperature 

by giving setpoint to the second cascade. Second 

cascade controls temperature on the boiler output 



with PI-controller (C2). It uses setpoint and 

feedforward coefficient acquired from the master and 

calculates setpoint for the third cascade. This in turn 

controls gas flow to the boiler with another PI 

controller (C3) by giving commands directly to the 

gas flow valve actuator. From gas flow measurement 

air pressure and air flow setpoints are calculated and 

transferred to the related PI controllers (C4 and C5). 

Tuning of cascade controller requires some extra 
efforts comparing to tuning of a simple PID-

controller [5]. Integration times of the controller 

cascades are selected to be quite big (up to 240 

seconds on the 2nd cascade) to provide stability. At 

the same time it causes control action to be too slow. 

As a result control of boiler output temperature (C2) 

is not fast enough – temperature setpoint changes 

faster than system achieves equilibrium (see figure 

3). 

 

 
 
Figure 3. Boiler output setpoint and measurement 

 

As the boilers are controlled with PI-controllers 

there is no any knowledge about the process in 

concern. There is no any algorithm applied to the 

system that could select the most efficient equipment 

to fulfill district heat pipeline requirements. Only 

human can perform this task at the moment. 

These are the reasons that lead us to the necessity 

of having some other control strategy that allows 

accumulating knowledge about controlled object and 
creating its model. The model can be further utilized 

for control purposes. 

2 Proposed concept 

It is obvious that good knowledge of a controlled 

process is needed to be able to evaluate its efficiency 

and predict its behavior for control purposes. 

There are three similar boilers, but each of them is 

unique because of different age, different time in 

operations and some minor mechanical differences. 

That is the reason why boilers are the most efficient 

on different loads and that is why it is important to 

select proper boiler for certain district heat system 

requirements. 

In this case object identification and modeling is 
vital, because it gives a method to compare boilers 

and select the most suitable of them for certain load. 

At the same time knowing the model it is possible 

to predict object behavior over a specified time 

horizon [4], [6] and perform more efficient control 

actions without delays which are inevitable in 

existing PI-controller application. 

Online identification can be used to identify the 

model of the considered process. An intelligent 

controller that is able to follow object parameters, 

identify it and create model. After that it is possible 

to start model based control continuing to follow 

object parameters and correcting model when it is 

needed. 

Controller needs to have variable number of 

inputs (in certain limits) to make its maintenance 

easier. In this case it is not mandatory for control 

engineer to know controller from inside. Number of 
inputs can be just increased or reduced to follow 

changes in real process under control. New model of 

the process will be identified automatically after 

some time. 

At the same time it should be ensured that 

controller does not go out of equilibrium and 

interrupt the controlled process. This could happen if 

object’s properties change due to some reasons. A 

special comparator is needed that compares setpoints 

and measurements and switches to conventional 

control strategy, if intelligent controller is not able to 

provide correct control actions. Conventional control 
based on PI-algorithm is often not the most efficient, 

but reliable enough. 

Intelligent controller, switched out of the control, 

continues to monitor the process and correct its 

model. When it is able to predict object behavior 

again with suitable precision it can return to control. 

For maintenance purposes controller can also be 

manually switched out of the control. 

This kind of intelligent controller is not restricted 

by a fixed model and can be reused without 

consumption of additional labor. It can be applied 
over existing conventional PI-controller to increase 

quality of control. 

As the key point of intelligent controller is correct 

plant model we concentrate in this paper on plant 

identification. 

3 Modeling for Predictive Control 

One of the possibilities to overcome the above 

mentioned problems is to apply a nonlinear Model 

Predictive Controller (MPC) [3], [6], [7]. This 

controller contains a model of the controlled plant 

which is used to predict future behavior of the plant 

in order to take proactive control actions.  It allows us 

to overcome some delays in control of a complex 

plant consisting of several subsystems connected 
between each other. The quality of the prediction 

directly depends on the accuracy of the identified 

model. Our goal is to obtain the highest possible 

accuracy of the plant’s model and consequently the 

accuracy of the prediction made by this model. The 

behavior of each node of the complex system will be 

modeled separately. 

In this paper we present identification of one of 

the nodes: one of three boilers used to heat the water 

flow. The process takes three measurements as its 

inputs: flow of air, gas and water (measured in m3/s). 
Temperature of the output water flow can be 

considered as the output of the heating process. As all 

measurements are related only to the considered 

boiler, we don’t need to take into account other 



boilers. They can be in or out of operation, but they 

do not affect any of current boiler parameters. Thus 

we have a Multiply Input – Single Output (MISO) 

dynamic system with 3 inputs and one output. 

The identification was made on real plant data. 

We measured input and output values during 48 

hours. We took one measurement per minute. Thus 

we got a data set consisting of 2880 measurements of 

each parameter. 2000 of them were selected for 
model identification and 880 were left for validation 

of the obtained model. 

The process can be identified by both linear and 

nonlinear model. PID controller used at the moment 

is based on linear description of the process.  Mean 

squared error (MSE) of the identified linear model on 

the validation set was 79 ∙ 10−3. On the same 
validation set MSE of the obtained nonlinear model 

was 61 ∙ 10−3 that clearly shows the effectiveness of 
implementing a nonlinear model and demonstrates of 

nonlinearities in the process. This comparatively 

small difference (about 23%) may lead to a 

significant loss in accuracy of recursive prediction 

where model error will accumulate on each iteration. 

We identified a nonlinear model of the dynamic 
process by training a fully connected feedforward 

artificial neural network (two-layer perceptron) with 

external feedback. Neural network implements the 

following difference equation 

 

𝑦  𝑡 = 𝑓(𝑧 𝑡 − 1 , 𝑧 𝑡 − 2 , 𝑧 𝑡 − 3 , 𝑧 𝑡 − 4 ) 

 

representing 4th order nonlinear model of the plant. 

Here 𝑧 𝑡 =  𝑢1 𝑡 𝑢2 𝑡 𝑢3 𝑡  𝑦 𝑡   is a vector of 

inputs and outputs at the corresponding time instance. 
The structure of the NN-based model is depicted in 

figure 4, where u(t) is a three element vector of inputs 

(air, gas and water). 

 

 
Figure 4. Neural Network based model 

 

This model was successfully applied to recursive 

prediction of changes in temperature of the water 

flow. Mean error of 5 minutes ahead predictions 

0,1 °C. Absolute values of 5 minutes ahead 

prediction error are presented in figure 5. 

Levenberg-Marquardt (LM) algorithm was 
chosen to perform the training, since it is much more 

efficient compared to other techniques when the 

network contains no more than a few hundred 

weights. Also the training speed of LM algorithm is 

much higher and the feed-forward neural network 

trained with it can better model nonlinearity. 

 
Figure 5. Five minutes prediction error 

 

It can also be seen from the figure that maximal 

prediction error is less than 1 °C. Only 4 neurons 

with nonlinear hyperbolic tangent activation function 

were used to identify this model. It means that the 

obtained NN-based nonlinear model is comparatively 

simple, it can easily be trained and adapted, easily 

implemented in software and will work very fast 

(prediction can be calculated in some milliseconds). 

4 Conclusions 

The main problem in distributed control system of 

the district heat plant is stated in the paper. At the 
moment, each node of the plant is controlled by a 

separate PI controller. After being interconnected into 

a large distributed system, delays between different 

nodes occur and lead to inaccuracy and late control 

actions. Control of each node depends on the result of 

the control action taken on the previous node earlier. 

Experimental results have shown that average delay 

is about 5 minutes. 

In this paper we consider identification of one 

part of a complex system presented in figure 6. 

Identification and MPC control of all interconnected 
sub-systems will make the subject of our further 

research leading to the solution for distributed control 

applied to system of systems. 

To overcome the problem stated in the paper, a 

MPC based approach is proposed. It requires accurate 

models of each controlled node and used actuators. A 

neural network based nonlinear model of one of the 

controlled parts (water boiler heated by using gas and 

air) is presented in the paper. Our experiments have 

shown that using this model it is possible to predict 

the behavior of the plant for 5 minutes with high 

accuracy which will be just enough to overcome the 
delay problems. 

The proposed technique can be implemented with 

Java programming language. Metso DNA control 

system is used for control of the considered district 

heat plant. It utilizes Function Block Language [8], 

[9] that provides possibility to create function blocks 

with Java code inside. 
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Abstract—The main goal of this paper is to identify an indus-
trial water boiler model and design a model predictive controller
(MPC). The boiler model was identified from the real process
data collected during a heating season. Controller was designed
and tested in virtual environment and its performance was
compared with performance of classical PI control algorithm that
is currently used to control a boiler system. Use of the designed
controller leads to significant improvement of accumulated output
error.

I. INTRODUCTION

The paper addresses a problem of control of a water boiler
which is part of bigger combined heat power plant (CHP). The
main objective of the CHP is to produce heat power for the
nearest cities. CHP production capacity is over 200 MW of
electrical power and over 800 MW of heat power (458 MW
in combined production).

The boiler was installed in year 1978. This is an old model
KVGM-100 producing 100 Gcal/h (116.3 MW) of heat power.
Some major investments were made to renovate the boiler
infrastructure several years ago, therefore it is now equipped
with modern measurement and control devices as well as
distributed control system (DCS). All the control applications
are implemented in the DCS on the software level. It is
possible to create or modify applications without interrupting
the process using set of predefined or programmable (on Java
language) function blocks. Nevertheless control methods used
in boiler control at present day are quite conservative based
on PI control algorithm.

Controlled variable in the main control loop of the boiler is
the output temperature. The fuel burning process and transfer
of heat power from furnace to water takes some time, so
there is a time delay between gas flow on the furnace input
and water temperature measurement on the boiler output.
Since PI controller uses output error for control, then it is
dependent on the delay. Therefore the integration time is set
longer than measurement delay to avoid permanent overshoot.
At the moment of process data collection integration time
parameter was 240 seconds. As the ideal PI control algorithm
is used [cout = Kp(e + 1

Ti

∫
e dt)] then the real integration

time is almost 270 seconds (Kp = 0.9). Given parameters
provide slow reaction of the controller to setpoint changes and
disturbances.

As the first step of our research we decided to model the
process for prediction purposes to reduce the delay effect.
Neural network was used to identify the process model [9]. The
obtained model provided an acceptable result for 5 minutes
incremental prediction with 1 minute step, however it was not
suitable for further research in simulation mode. The problem
was an accumulated error that after the 10 steps of simulation
resulted in oscillating behaviour with increasing amplitude.

As the next step we decided to use linear identification of
the process. Using the identified model we proceeded with the
design of the model predictive control, which is known to be
widely used and efficient solution for many control tasks in
industry. MPC theory has well established foundation [2] and
a lot of various applications, see e.g. [3], [4], [7].

The rest of the paper is organised as follows. Sections
II describes the process under control. Section III considers
existing control algorithm and its problems. In Section IV
model predictive controller general description is given. In
Section V process model identification and MPC design pro-
cedures described and simulation results are presented. The
paper is finalised with Conclusion and Discussion Sections.

II. COMBINED HEAT PLANT AND WATER BOILER

The boiler is a part of bigger CHP that includes also another
two water boilers and three power units. General power plant
layout can be seen in Fig. 1.

Abbreviations on the picture are as follows

WB Water Boiler
PU Power Unit
HP Heat Power
EP Electric Power

Water coming from district heat network is supplied to the first
level of heat producing facility – running power units or by-
pass. After passing the first level it is supplied to the second



Fig. 1. Power plant layout

one – running water boilers or by-pass. Then heated water is
supplied back to the district heat network.

Water boilers are fueled with natural gas. Originally all the
boilers can also run on heavy oil. In year 1999 it was decided to
decrease emissions of the power plant. Since heavy oil burning
produces more emissions, all boilers were switched to use of
natural gas. Heavy oil is still kept as a reserve fuel, but it has
not been used since then.

CHP can function in different modes. In heat producing
mode only water boiler(s) run(s). In combined production
mode power unit(s) run(s) also. Simplified heat production
process can be described from the physical laws as follows.
Produced heat per time unit is

∆Qprod = r ·∆mf . (1)

Consumed heat per time unit is

∆Qcons = c ·∆mw ·∆Twater. (2)

These values relate to each other as follows

∆Qprod = ∆Qcons + ∆Qloss, (3)

where ∆Qloss is heat lost with flue gases and other ways. The
physical meaning of parameters is the following
r gas specific heat of combustion
∆mf gas flow
c water heat capacity
∆mw water flow
∆Tw water temperature increase
We are interested in water temperature increase on the boiler

output

∆Twater =
r ·∆mf

c ·∆mw
− ∆Qloss
c ·∆mw

. (4)

In principle, Qloss is unknown, but it should correlate with
gas and air flow – the more gas and air are supplied to the
furnace the more flue gases produced the more heat lost with
it. Rough estimation yields

∆Twater = (r − l) · ∆mf

c ·∆mw
, (5)

where l is unknown constant. Parameters c and r are also
constants. Equation (5) is linear, if water flow (∆mw) is
constant and nonlinear otherwise. As will be seen later this
can cause certain difficulties while designing linear MPC for
the considered nonlinear process.

III. EXISTING CONTROL STRATEGY AND PROBLEM
STATEMENT

Water boilers have two modes of operation--stationary and
control. Only one boiler can run in control mode simul-
taneously. If more than one boiler run at the same time,
then others are operated in stationary mode. Control mode
necessity is caused by variable district heat network needs.
Temperature setpoint and water flow change several times per
day, depending on heat power requirements of the city caused
by weather dependent heating of the houses and different use
of hot water in the morning, afternoon and evening. Setpoint
comes from the district heat system.

It was mentioned that PI controllers are used for the plant
control. PI is single input single output (SISO) system, but
plant has more inputs and outputs. Different combinations of
control loops are used to utilize all signals. Plant controller
layout is shown in Fig. 2.

Fig. 2. Controller layout

This cascade PI controller regulates output of the plant
loop P1/C1. Inner loop P2/C2 controls output of the water
boiler. Loops P3/C3, P4/C4 and P5/C5 control certain gas and
air actuators. Loops 3-5 are fast, Loops 1-2 are much slower
compared to them. See Table I for all parameters’ values of
the controllers.

TABLE I
CONTROLLERS TUNING PARAMETERS

Control loop Kp Ti
Air pressure 1 0.2 40
Air pressure 2 0.2 40

Air flow 1 0.8 18
Air flow 2 0.3 20
Air flow 3 0.4 29

Gas flow (C3) 0.25 20
Boiler output (C2) 0.9 240
Plant output (C1) 0.5 180



We do not consider the whole controller structure in this
paper, but only boiler controller C2.

Boiler layout with sensors and actuators is presented in
Fig. 3.

Fig. 3. Boiler layout

There is a bottom layer of controllers containing two air
pressure controllers, three air flow controllers and one gas flow
controller.

Since process is relatively slow in our case, controllers
integration time has to be long enough to avoid permanent
output overshoot. Due to this fact controller has very slow
reaction to setpoint change. This is critical for the control loop
C2, because its setpoint depends on master controller C1 and
changes all the time.

IV. MODEL PREDICTIVE CONTROLLER

MPC uses model to predict process behavior and generate
manipulated process input(s) so that it would be possible to
minimize process output(s) deviation from the setpoint. Con-
troller uses receding horizon Hp to predict process behavior p
steps ahead and control horizon Hc to generate manipulated
variables c steps ahead assuming that after cth step process
input remains constant. The first value of control horizon is
applied at present moment. Existing estimations are discarded
in the next time instance and the same output prediction and
input generation actions are repeated. Cost function is used to
penalize output deviation from the setpoint. Also changes of
the input vector can be penalized to control process dynamics.

V (k) =

Hp∑

i=1

‖z(k− i)− y(k− i)‖2Q(i) +

Hc∑

i=1

‖∆u(k− i)‖2R(i), (6)

where Qi and Ri are weighting matrices and ‖x‖2A = xTAx.
If we cannot measure the full state vector or if the measured

outputs consist of some linear combinations of the states, so
that the states cannot be measured directly, then an observer
can be used to estimate the state vector [2].

A very useful MPC property is its ability to obey con-
straints. It is possible to limit output, input and input changes.

This property helps to take into account such physical lim-
itation as tank levels (which cannot be below 0) or valve
closing/opening limit (which cannot open less than 0% and
more than 100%) etc. Constrains are defined in the form of
linear inequalities

A

(
∆U(k)

1

)
≤ 0, (7)

B

(
U(k)

1

)
≤ 0, (8)

C

(
Y (k)

1

)
≤ 0, (9)

where A, B and C are matrices of constraints parameters.
∆U(k) and U(k) are vectors of estimated changes of inputs
and inputs values within control horizon, Y (k) is a vector of
estimated outputs within prediction horizon. By solving this
system we can come to inequality, which limits inputs’ moves
only. So, we can keep all limits by constraining vector ∆U ,
as follows

Ω∆U(k) ≤ ω(x(k), u(k − 1)). (10)

Here we come to the core of constrained MPC, an opti-
mizer, which solves standard optimization problem known as
quadratic programming

min
θ

1

2
θTΦθ + φT θ (11)

subject to
Ωθ ≤ ω. (12)

This is an optimization problem. A number of methods exists
to solve it, e.g. Active Set method or Interior Point method [2].

V. MPC FOR WATER BOILER

According to [4] MPC design procedure includes
1) definition of used inputs outputs
2) process data collection
3) process model design
4) configure MPC with initial parameters
5) testing in simulation
6) testing in real process in open loop
7) testing in close loop and final fine tuning
Current work covers five first steps of the list. Required in-

puts and outputs were selected after process analysis. Relevant
process data was collected from several running periods.

A. Model design for process simulation and MPC

The process cannot be modeled from the first principles,
because there is not enough information for this. Therefore we
have to use identification methods based on real process data.
MATLAB Identification Toolbox was used to create process
models for simulation and for MPC. Different data sets were
used for modeling to avoid ideal control with identical models.
Also different data sets were used for modeling and validation
in each case.

Process data of water boiler 2 (WB2) is available for the
period of over 500 hours with 1 minute resolution. There were



few running periods during this time. Only running period data
was used for the identification. Start-up and shut-down period
data was not used to avoid major nonlinearities and reduction
of linear model quality.

Model for process simulation was identified from a data set
where process variables’ values fit into the following ranges

• water flow: 340–370 m3/h;
• gas flow: 6400–10700 Nm3/h;
• output temperature: 42–63 ◦C.
First, autoregressive with exogenous input (ARX) structure

for the model was used. It showed fit to validation data
∼ 50%). With output error (OE) models fit to validation data
> 90% was achieved, which is good enough. OE is one of the
most popular model types, because it is often closer to reality
than others [3]. OE model has the form

y(k) =
B(q)

F (q)
u(k) + v(k). (13)

Its estimation is a little bit more complicate than ARX esti-
mation, because it does not use output measurements (y), but
output simulations (ỹ) [3]

y(k) =
m∑

i=1

biu(k − i)−
m∑

i=1

fiỹ(k − i). (14)

One of the OE modelling methods is to start with ARX
estimation (linear least square optimization) for F (q)y =
B(q)u + v(k), then filtering inputs and outputs through es-
timated filter F (q)

uF (k) =
1

F (q)
u(k), (15)

yF (k) =
1

F (q)
y(k) (16)

and finally making ARX estimation for filtered inputs uF (k)
and outputs yF (k). MATLAB Identification Toolbox performs
OE model estimation automatically.

It is not possible to start simulation from predefined state
using OE, thus polynomial was converted to state-space model
for convenience of use.

A =




1.80 −0.80 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 2.61 −1.14 0.34 0
0 0 0 2 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0




B =




0.25 0
0 0
0 0
0 0.06
0 0
0 0
0 0




C =
(
−3.8 −2.8 6.5 1.9 −2.3 2.1 −0.7

)
· 10−2

Model output fit to validation data was 94.76%. Fig. 4 shows
real process output and model output for the same real input
values.
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Fig. 4. Model and process outputs

Similar procedure was repeated to create linear model for
MPC. Data set from another running period was used for this
purpose

• water flow: 320–390 m3/h;
• gas flow: 6000–12700 Nm3/h;
• output temperature: 40–75 ◦C.
Linear state-space representation of identified model is

A =




1.86 −0.95 0.35 0 0 0
1 0 0 0 0 0
0 0.25 0 0 0 0
0 0 0 2.11 −0.69 0.27
0 0 0 2 0 0
0 0 0 0 0.5 0




B =




0.25 0
0 0
0 0
0 0.03
0 0
0 0




C =
(
−6.27 −2.58 35.37 0.94 0.45 −1.81

)
· 10−2

Model output fit to validation data was 82.68%. MPC linear
model was identified from a wider ranges of process data, so
its quality is lower due to process nonlinearities. This is also
a reason for the difference between process and MPC models.

B. MPC design

MATLAB MPC Toolbox was used to design model predic-
tive controller based on identified model. The following inputs
and outputs were selected for MPC design



• Gas flow (manipulated variable / process input);
• Water flow (measured disturbance / process input);
• Water temperature (measured output).

The parameters to be tuned are
• Prediction horizon Hp;
• Control horizon Hu;
• Overall coefficient W ;
• Input move weight Ri;
• Output value weight Qi.

The controller is going to manipulate gas flow by affecting
underlying loop with actuator with certain physical limitations.
It would be good to take these limitations into account to avoid
saturations. From process data it is possible to obtain gas flow
maximum (approximately 16000 m3/h) and gas flow variance
dynamics (±2000 m3/h per step). These values can be used
to define MPC constraints.

Many simulations were made with different controller
settings iterating to the most suitable parameters. The best
performance of MPC in the selected operating range was
achieved with the following settings

Hp = 6, Hu = 1,W = 1, Ri = 0.1, Qi = 50.

Prediction and control horizons are short, because we need
fast enough behavior of MPC. Keeping output temperature
deviation close to setpoint is much more important than input
move speed, that is why Qi is much bigger than Ri. Due to
the same reason overall coefficient is chosen as W = 1. It is
used to balance output and input changes penalties. If W is
close to 0, then MPC is slow, but more robust. If W is close
to 1 then MPC is fast.

Designed MPC was used in Simulink environment to com-
pare it with PI controller. Two loops were created in Simulink
with the same simulation model – one for MPC test, another
one for PI test. Classical serial PI layout was used for testing
(as the same layout is used in the real control system). Original
PI controller settings Kp = 0.9 and Ti = 240 were used in
the beginning, but later Zeigler-Nichols tuning method [1] was
applied to obtain more suitable controller parameters. Many
simulations were made with these settings and also with some
deviations from these settings looking for better performance.
The best result with this model and PI controller was achieved
with parameters Kp = 1.35 and Ti = 405. These were used
for comparison of PI and MPC, see Fig. 5.

MPC showed approximately 10% lower accumulated error,
see Fig. 6.

Checking MPC with Matlab tool review(mpcobject)
showed that controller is stable internally and in closed-loop
assuming that process model is perfect. Simulations with
imperfect model showed also its stability in selected operating
range of process variables.

To see how model accuracy affects MPC performance we
consider also the ideal case, when simulation model and MPC
model are identical. Another MPC with the same parameters
was designed on the base of the process simulation model.
Its prediction is accurate, therefore overshoot is small and
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performance is better compared with MPC with different
model, see Fig. 7.

This result shows importance of model accuracy and high-
lights the fact that linear MPC will act most efficiently around
the linearization point and less efficiently in other operating
range [5].

VI. COCLUSION

Process model was identified based on real data. Obtained
model was used to design model predictive controller for water
boiler control. The controller was tested in virtual environment
using real data. Even in case of a model identified around
operating point different from that one process is running
around, MPC showed approximately 10% better performance
then PI controller. This result makes it reasonable to apply
the MPC to real process control, especially in situation when
suitable programming environment exists in the form of Java
programmable function blocks that can be downloaded to the
DCS and used instead of existing PI control loops.

VII. DISCUSSION

This work resulted in an MPC design for water boiler
control. The controller was compared to PI controller in
simulation and showed better results. This was the main goal of
the work to continue development in the replacement of PI with
model based control. PI can be left in hot reserve following
the controlled variable, but not affecting the process. It can be
activated in case MPC gets to an infeasible region.

At first sight it could seem that replacement of a simple
PI with a more complex MPC is not reasonable yielding only
a relatively small performance improvement. We should not
forget here that only part of existing control loop was replaced
this time. We could improve performance of lower level control
loop, but there is higher level controller that is still based on PI
algorithm. It is obvious that better results can be obtained by
replacing the whole plant controller with one MPC. A matter
of further research is the design of multiple input multiple
output MPC instead of cascade PI controller.

This work also showed that direct use of linear control
methods for nonlinear plant can cause certain difficulties (e.g.

overshoot). In the future development this should be taken
into account and some nonlinear methods should be used, e.g.
multiple linear models [3] or nonlinear model [3], [6], [8].

The general idea of our work is to create adaptive controller
that can identify process model automatically and perform
control actions accordingly. Similar topic was presented in e.g.
[5] and [11], where it was also admitted that adaptive MPC can
decrease implementation and maintenance costs. Since costs
reduction and nonlinearity handling are in the list of the main
challenges in MPC researches at present day [10] our current
work provides suitable field for further development.
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In this paper, we lay the foundation for a specialized Intelligent Control
System (ICS) for district heating plants and investigate the problem of in-
tegrating particular knowledge into the developed system. In particular,
we consider the fuzzy logic based control module. Based on control system
knowledge, a particular control loop is developed and successfully imple-
mented on a live industrial heating plant. The resulting automatic control
system improves the performance of the existing control loop, allows to pro-
long the lifespan of industrial equipment by allowing to maintain it in a
nominal operating condition, and alleviates the necessity for frequent man-
ual control override by heating plant operators. The obtained knowledge
forms a valuable asset to the ICS as a part of the corresponding module.
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Abstract—In this paper, we lay the foundation for a specialized
Intelligent Control System (ICS) for district heating plants and
investigate the problem of integrating particular knowledge into
the developed system. In particular, we consider the fuzzy logic
based control module. Based on control system knowledge, a
particular control loop is developed and successfully implemented
on a live industrial heating plant. The resulting automatic control
system improves the performance of the existing control loop,
allows to prolong the lifespan of industrial equipment by allowing
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the necessity for frequent manual control override by heating
plant operators. The obtained knowledge forms a valuable asset
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I. INTRODUCTION

Control theory has formed a basis for implementation of
intelligent control methods in the industry. One of the most
important open issues lies in the combination of classical
industrial controllers with knowledge based reasoning within a
single programming framework [1]. This forms the motivation
for our present work.

We restrict our attention to district heating plants. The
motivation behind this choice is dictated by the importance
of the role these play in Northern Europe [2], [3]. Practical
implementation and verification of the ICS is also facilitated
due to the rise of interest of local and international industrial
entities towards these new developments.

The idea behind the design of an intelligent control system
based on an underlying set of Computer-Aided Control System
Design (CACSD) tools is not new [4], [5], [6] and some
of the results have already been successfully applied in the
industry [7] and, in particular, in critical heating applications
[8]. The approach proposed in this paper aims at establishing
a suitable software framework that leverages particular fields
of expertise of the involved researchers, and then using it
for creating a specialized ICS for efficient control of district
heating plants. Towards that end, several studies have already
been conducted. In [9] we have investigated the issue of
neural network based industrial water boiler identification for

Model Predictive Control (MPC). In [10], a suitable MPC was
designed such that improved the performance of the heating
plant.

In this paper, a fuzzy logic based approach is considered [11].
Fuzzy logic provides the necessary universal tools for the
developed framework [12]. There are numerous industrial ap-
plications of fuzzy control. In [13] a fuzzy controller is designed
as part of a wastewater treatment process. Of special interest in
this work are applications related to heating processes, where
fuzzy control of heat exchangers are investigated [14] and [15].
Study of literature also reveals that practically applicable fuzzy
rule sets are usually not very complicated [16].

The main contribution of this paper lies in the design and
experimental verification of a fuzzy logic based control loop
in the context of a live heating plant. Our aim is to integrate
the obtained knowledge into the fuzzy modeling and control
module of the developed ICS.

The structure of the paper is as follows. In Section II the
initial design of the ICS is presented and its relation to the
industrial fuzzy control application is outlined. In Section III
the specific industrial problem is detailed, and a corresponding
fuzzy controller is designed, implemented, and verified on
a live heating plant. The results are presented and analyzed.
Finally, conclusions are drawn in Section IV.

II. DESIGN OF THE INTELLIGENT CONTROL SYSTEM

A. Description of the Prospective Software Platform

The prospective ICS shall have a modular structure depicted
in Fig. 1. The modules are designed independently, but form a
whole by means of interaction through the ICS core. The
complete system is envisioned as a software package for
providing control solutions for various loops in district heating
plants. The modules are based around specific knowledge of the
team of Control System Research Laboratory [17]. In particular,
the following competences are considered:

• Nonlinear control design, dynamic linearization, and
artificial neural networks [18], [19].



• Fractional-order modeling and control, including retuning
existing PI/PID control loops with FOPI/FOPID con-
trollers to improve performance [20]. This particular com-
petence revolves around developing a CACSD system—
FOMCON toolbox for MATLAB [21], [22]. Research
shows that fractional-order calculus is very useful in
heating control applications [23].

• Fuzzy logic based modeling and control—a part of this
contribution.

• Optimal controller structure determination using genetic
algorithms [24], for which a software solution is in
development.

• Model predictive control [10].
The ICS will therefore be formed by a combination of classical
control techniques with intelligent control methods by means of
the interacting modules. This expert system will be capable of
determining the most suitable control strategy for a particular
part of a heating plant with respect to a predefined set of control
quality criteria through collection and analysis of experimental
data, analytical and nonanalytical modeling, and computer
based simulation and verification.

Fig. 1. Structure of the Intelligent Control System core

The initial implementation of the ICS will have the form
of a CACSD software system, the novelty of which lies in
the interconnected applications of various modules described
above, and in the application of knowledge and data collected
from different district heating plants in the specific region.

If implemented as an autonomous distributed control system
(DCS), the modular structure of the proposed ICS fits well
with the prospective design of Industry 4.0 applications [25].
Furthermore, in real industrial applications, a modular approach
is desired because the resulting structure is easier to analyze.
The interconnection of modules in the proposed ICS allows to
tackle several problems at once with the modules being “aware”
of the tools applied from other modules. In this work, we focus
on the fuzzy logic based modeling and control module.

B. Specifics of Fuzzy Logic based Control Design

In this contribution, we are interested in a controller that is
capable of accomplishing the following tasks put forth by a
typical control problem in heating plants:

• It must ensure stable and correct operation of the overall
control loop;

• It has to maintain nominal operating conditions for various
particular pieces of equipment (e.g., boilers) involved in
the process;

• It should make possible running the system in automatic
mode.

Control loops may already be present to solve these problems,
but may do so inefficiently and require frequent manual
intervention from the plant operators. Retuning of the involved
controllers may improve the performance of the loop [20].
However an additional controller can be used such that
generates correcting signals based on the patterns of manual
control override.

To design such a controller, the engineer must take into
consideration the concrete specifications of the equipment used
in process control, acceptable control action value ranges, as
well as the resulting system dynamics. This specific knowledge
must be transfered to the ICS. In what follows, we assume
that the system then makes a decision based on the available
data to use a fuzzy controller to solve the control problem.
This scenario is described next in the context of a particular
industrial application.

III. INDUSTRIAL APPLICATION

A. Process description

In this article we consider a process control problem of a
boiler-house plant located in Rapla town near Tallinn city in
Estonia. The boiler-house includes three gas boilers and one
biofuel (wood chips) boiler. Gas boilers 1 and 2 are currently
not in use, so they are not discussed in present investigation.
Main production facility of the boiler-house is biofuel boiler
(number 4) as it is more economically efficient due to lower
biofuel price compared to natural gas price.

The biofuel boiler is operated permanently during the heating
season except the maintenance periods. It can produce up to 5
MW of heat power. If more heat power is required, than a gas
boiler is turned on in parallel with the biofuel facility.

Boiler-house layout (excluding boilers 1 and 2) is presented
in Figure 2.

There is an internal water pipeline where water circulates
between heat exchanger and boilers. The heat exchanger is
a connection point between internal and external pipelines.
External pipeline is used for water circulation between the
boiler-house and the district-heat (DH) network where heat
power is delivered to households and industrial consumers.

The biofuel boiler has a grate furnace. Fuel feeding speed
can be adjusted by changing the frequency of movement of
a hydraulic piston that pushes fixed amount of fuel into the
furnace each time.



Fig. 2. Boiler-house control layout.

Boiler-house automation is made on the base of a distributed
control system (DCS). Information exchange (measurements,
control signals) with sensors and actuators is performed through
input/output cards, Profibus and Modbus interfaces. All the
controllers and logic algorithms are implemented as application
programs. The DCS controls boiler 4 and pipeline operations.
Each gas boiler has its own simple control based on a
programmable logic controller (PLC). PLC control applications
adjusts gas flow to keep boiler’s outlet water temperature on a
certain setpoint value. There is no data exchange between PLC
and DCS, so it is possible to adjust gas boiler’s heat production
only by manipulating the water flow control valve V3.

There are two scenarios for boiler-house operation. The first
one is applied when DH network demands less than 5MW of
heat power and boiler 4 can be operated alone and produce
enough heat. Control loop TIC0 keeps boiler-house water outlet
temperature near the setpoint. Setpoint depends on outer air
temperature as shown in Table I. A conventional PI controller is
used to control boiler-house outlet water temperature. Controller
signal is supplied to internal pipeline pump frequency converter.
Higher frequency leads to the faster pump rotation speed rising
water flow through the boiler 4. The higher the flow the more
heat is transferred to the heat exchanger.

Table I. Boiler-house outlet water temperature dependency on outer air
temperature. Intermediate values are linearly interpolated.

Outer air temperature Boiler-house outlet temperature

-22°C 95°C

0°C 69°C

20°C 65°C

Heat power supplied to the DH network is measured and
connected to PI controller UIC0 as a controlled variable. This
controller keeps boiler 4 heat power production near the setpoint
by adjusting the amount of fuel feeds per hour. Setpoint is
calculated according to the following equation:

USP = cwfw0(TSP − Tin), (1)

where USP is DH network needs, cw is water heat capacity,
fw0 is DH network water flow,Tin is boiler-house input water
tepemperature and TSP is TIC0 setpoint.

Boiler 4 has recirculation pipeline that passes part of boiler 4
outlet water to its inlet mixing with water coming from the
heat exchanger. This is needed to keep the temperature in all
points inside the the boiler above 100°C and prevent moisture
from the fuel to condensate on boiler walls on the furnace side
causing corrosion. There is a specific limitation related to this.
Boiler’s outlet water temperature has to be above 110°C. If
it is below this value, then recirculation flow is not enough
to keep boiler inlet temperature greater than 100°C. At the
same time outlet temperature cannot be above 120°C, because
materials of the boiler and pipelines are not designed for long
term operation in such conditions. This can decrease boiler’s
lifetime and rise maintenance costs.

As UIC0 PI controller can keep only one measurement near
the setpoint, there is additional logic that prevents controller
to decrease its output when outlet water temperature is below
115°C and goes down from one side and to increase its output
when the outlet water temperature is above the same value and
rises from another.

This control keeps outlet water temperature fluctuating in
the range between 110°C and 120°C. At the same time boiler-
house outlet water temperature deviates from the setpoint by
1°C, which is acceptable.

When DH network demand grows above 5MW the gas boiler
3 has to be turned on to provide additional heat.

In this scenario control loop for boiler-house outlet water
temperature is the same TIC0, but boiler heat power production
is now managed by another PI controller that has a static
setpoint set by the operator. Normally its value is the maximum
capacity of the boiler 4 5MW. Remaining required heat is
produced by the boiler 3. There is a power controller UIC3
that controls water flow through the boiler. Boiler 3 has a
separate PLC that keeps outlet water temperature near the
setpoint 110°C. Produced heat power can be controlled from
DCS by only adjusting valve V3 position.

This kind of control did not work due to hydraulic de-
pendency of water flows between boilers 3 and 4. When
DH network demand is over 5 MW, boiler 4 works on its
maximum capacity and boiler 3 produces remaining heat. If
DH network demand goes down, UIC3 adjusts V3 position in
closing direction. Water flow through the boiler 3 decreases,
but due to hydraulic dependency flow rate increases through the
boiler 4 and washes out more than 5 MW of heat from it. As
a consequence boiler 4 outlet water temperature falls down. At
the same time heat power setpoint of boiler 3 decreases more,
because boiler 4 heat production measurement goes above 5
MW. Valve V3 closes more because of this reason increasing
boiler 4 flow more. At the same time UIC4 additional logic
forces it to increase feed rate to rise boiler’s outlet water
temperature causing boiler to function above its maximum
capacity.

An additional control loop TIC4 was used with testing
purposes to control boiler 4 outlet water temperature by



adjusting valve V4, but this caused other problems in process
control. In the same situation when DH network demand
decreases flow through the boiler 4 rises, temperature falls
down and valve V4 starts to close under control of TIC4.
This causes increase of the flow through the boiler 3 and
valve V3 continues to close. Because of this race condition
the whole flow through the boilers decreases, boiler-house
outlet temperature starts to fall down. TIC0 increases speed
until achieves 100%. Saturated control loop cannot keep boiler-
house outlet water temperature close enough to the setpoint. In
addition, motor working with 100% speed consumes maximum
electricity causing increase of own costs of the boiler-house
production process. Race condition between TIC4 and UIC3
ended on approximately equal heat production in boilers 3 and
4. In case of DH network demand of 7MW it meant underload
of boiler 4 and use of additional gas fuel in boiler 3 due to
this.

B. Fuzzy controller

It would be possible to use additional logic to try to keep
both process parameters—boiler 3 heat production and water
flow through the boiler 4—on desired level, but at the same
time it is a good opportunity to apply fuzzy controller that is
natural for multiple input single output (MISO) systems.

Our target is to decrease heat production of boiler 3 when
the needs of DH network decrease. We are doing it by closing
valve V3 and decreasing the flow through the boiler 3. At
the same time we would not like to increase flow through
boiler 4. So, we have system with two inputs and one output—
valve V3.

We decide to apply a simple fuzzy controller for this case
using three triangular membership functions (MSF) for each
input and five actions for output. There are nine rules used
(see Table II).

Simple triangular MSF are selected for this application (see
Figure 3).

Fig. 3. Membership function

The first input is heat power of the boiler 3. It is changing
in time, so MSF has to be changeable. To build the MSF we
define two parameters—setpoint (SP) and MSF width. Using
these parameters we build three MSFs. Middle one is “OK”,
left one for low values of measurement and right one for high
values. Left MSF has value 1 from minus infinity to SP-width
and then decreases linearly to 0 by achieving SP. “OK” MSF
increases linearly from 0 to 1 while moving from SP-width

to SP and decreases linearly from 1 to 0 while moving from
SP to SP+width. Right MSF increases linearly from 0 to 1
while moving from SP to SP+width and then has value 1 until
infinity. Setpoint value for the first input is calculated on the
base of DH network needs:

U3 = U0 − U4, (2)

where U4 is boiler 4 heat production, U0 is DH network
demand, U3 is required boiler 3 heat production. MSF width
is defined manually as 0.4.

Same mechanism is applied to the second input—water flow
through the boiler 4. Required value is calculated on the base
of other process parameters:

fSP =
U4

cw(Tout − Tin)
, (3)

where U4 is boiler 4 heat power, cw is water heat capacity,
Tin is boiler 4 input water temperature and Tout is boiler 4
outlet water temperature. So, setpoint value is equal to fSP

and MSF width we define manually as 14.
There are five possible actions defined: remove much, remove

little, no action, add little, add much. Following nine rules are
defined:

Table II. Fuzzy rules.

Rule Input 1 Input 2 Action

1 Low Low No action

2 Low OK Add little

3 Low High Add much

4 OK Low Remove little

5 OK OK No action

6 OK High Add little

7 High Low Remove much

8 High OK Remove little

9 High High No action

As it was mentioned earlier, closing of the gas boiler outlet
flow valve leads to reduction of water flow and heat production,
because gas boiler’s PLC control keeps outlet temperature
constant. Less flow with the same temperature means less heat
and vice versa. At the same time decreased flow through the
boiler 3 while internal pipeline pump speed is constant causes
increase of flow rate through the boiler 4. Taking these facts
into account it is possible to describe following reasoning for
definition of the fuzzy rules.

Rule 1. When boiler 3 produces less power than needed
and flow through the boiler 4 is too low then no actions are
needed. Due to low heat production boiler-house outlet water
temperature will drop and TIC0 will increase internal water
flow pump M0 speed. Flow through the boilers 3 and 4 will
rise and boiler 3 will increase heat production as well.

Rule 2. If boiler 3 heat production is low and boiler 4 water
flow is OK then it is possible to open valve V3 a bit to increase



boiler 3 heat production while affecting boiler 4 water flow in
a minor way.

Rule 3. If boiler 3 heat production is low and boiler 4 water
flow is high then there is obvious need to open valve V3 much
to increase boiler 3 heat production and decrease boiler 4 water
flow.

Rule 4. If boiler 3 heat production is OK and boiler 4 water
flow is low then valve V3 can be closed a bit to increase boiler
4 water flow without affecting boiler 3 heat production too
much.

Rule 5. If both inputs are OK then no actions are needed.
Rule 6. If boiler 3 heat production is OK and boiler 4 water

flow is high then valve V3 can be opened slightly to decrease
boiler 4 water flow without affecting boiler 3 heat production
too much.

Rule 7. If boiler 3 heat production is high and boiler 4 water
flow is low then valve V3 needs to be closed much to shorten
boiler 3 heat production and increase boiler 4 water flow.

Rule 8. If boiler 3 heat production is high, but boiler 4 water
flow is OK, valve V3 can be slightly closed to reduce boiler
3 heat production without affecting boiler 4 water flow too
much.

Rule 9. When boiler 3 produces more power than needed
and flow through the boiler 4 is too fast, no actions are needed.
Due to excessive heat generation boiler-house outlet water
temperature will rise above the setpoint and TIC0 will decrease
internal water flow pump M0 speed. Flow through the boilers
3 and 4 will be diminished and boiler 3 will decrease heat
production as well.

Sugeno-type fuzzy inference [26] is selected to produce
fuzzy controller output signal. “Product” AND function is used
to calculate firing strengths si of each rule i (i = 1, ... , N,
where N is number of rules). Rule table defines action ai for
each rule, where every action has its own output level l(ai).
Final control con is calculated according to 4.

con =

N∑
i=1

wil(ai)

N∑
i=1

wi

(4)

Controller functions in incremental mode, con defines change
of controller output per second.

Output levels are selected by try & error method. Their
values are shown in Table III.

Table III. Output levels.

Action Output level

1 Reduce much -0.12

2 Reduce little -0.05

3 No action 0

4 Add little 0.05

5 Add much 0.12

C. Results

As it was written earlier before implementation of fuzzy
control there was a PI controller for boiler 3 heat power control.
It controlled heat production without paying attention to water
flow to boiler 4. As boilers 3 and 4 are hydraulically dependant,
manipulation of boiler 3 valve caused increase of boiler 4
water flow leading to decrease of boiler 4 outlet temperature.
Additional logic of boiler 4 heat power controller prevents it
from decreasing fuel feed rate, if outlet temperature is low.
Due to this reason boiler 4 produced 6MW of heat power for a
few hours (Figure 4a), which is not allowed from technological
point of view. Maximum heat production can be 5.5MW for
short period of time. Because of long overload boiler 3 heat
power controller was turned into manual mode. Heat production
of boiler 3 was controlled by the operator in manual mode for
few days until implementation of fuzzy controller.

After implementation of fuzzy logic boiler 3 heat power
controller started to take into account flow through the boiler
4 keeping heat production as close as possible to the setpoint
and supplying suitable amount of water to boiler 4 for its
proper operation on maximum load. Since this moment all the
controllers were switched to auto mode keeping all the process
parameters close to their setpoints. Boiler 4 heat production
was close to 5MW and outlet temperature close to 115°C, see
Figure 4b.

In the bottom trend of Figure 4b it can be seen that boiler
4 heat production variation frequency reduced since some
moment. This was caused by decreasing firing strengths of
fuzzy controller rules. Probably it is worth to lower these
strengths more to make variations smoother. Unfortunately
changed weather conditions do not allow to test modifications
immediately. DH network demand is less than 5MW and only
boiler 4 is in operation nowadays. Next tuning possibility will
apparently be available next season.

IV. CONCLUSIONS

In this paper, we proposed an initial structure of an ICS
designed for creating and modifying control loops in district
heating plants. The main contribution of the paper was the
design and practical implementation of an industrial fuzzy
controller for a heating plant which is a valuable addition to
the fuzzy control module of the ICS. The industrial application
was tested and was found to improve the performance of the
underlying control loop which is supported by experimental
evidence. In particular, the new controller allows to properly
fulfill the control task, keep the equipment in the correct
operating point thus prolonging its lifespan, and prevent the
necessity for frequent manual control override. Therefore, the
requirements for the controller put forth by a specific heating
element and described in this paper are satisfied, and the
knowledge is preserved to form a part of the prospective ICS.
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Fig. 4. Comparison of boiler 4 control loop performance.
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This paper describes the design of unconstrained model predictive controller
(MPC) and the corresponding simulation environment. The resulting con-
troller is developed in Java programming language and implemented as a
standalone application. The idea of this work is to test an MPC application
in a distributed control system (DCS) run-time environment in a simula-
tion mode before it can be implemented in the real process. Results show
that developed MPC application is capable of controlling the simulated pro-
cess in a stable manner and perform better than a PI controller under same
conditions.
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Abstract—This paper describes the design of unconstrained
model predictive controller (MPC) and the corresponding sim-
ulation environment. The resulting controller is developed in
Java programming language and implemented as a standalone
application. The idea of this work is to test an MPC application
in a distributed control system (DCS) run-time environment in
a simulation mode before it can be implemented in the real
process. Results show that developed MPC application is capable
of controlling the simulated process in a stable manner and
perform better than a PI controller under same conditions.

I. INTRODUCTION

MPC is a well-known control strategy that has had an
incredible development since the late 80s, see e.g. [2], [5],
[6], [11]. A good overview of the whole topic is given in [14].
MPC can be found in diverse industries such as: automotive
[3], chemical [4], [12], [16], and in power electronics and
drives [19], just to mention a few. Nevertheless the use of
this kind of control is not yet widely spread giving priority to
classical PI(D) controllers in many industrial applications. In
this paper, we consider the development of a standalone MPC
application and its implementation in a real process control on
its first step—testing in simulation environment built in real
DCS.

One of the processes controlled by PI control loops is a
water boiler of a combined heating plant (CHP) near the city
of Tallinn, Estonia. Plant production facilities include a waste
to energy (WtE) power unit that produces heat and electricity,
and a gas-fueled water boiler that produces only heat. Power
plant is controlled by means of DCS that can maintain a high
level of automation. WtE unit produces 50 MW of heat power
at its maximum capacity. When this heat is below city demand,
a water boiler is started. Water boiler produces up to 116
MW of heat. Power unit is normally operated at a constant
load and water boiler produces variable heat depending on the
district heat (DH) network’s demand. The biggest challenge
is to control the water boiler so that it could change the
power production as fast as DH network load requires. At the
moment, boiler heat production is controlled with a cascade
PI-controller consisting of three cascades: plant outlet water
temperature control, water boiler outlet temperature control

and boiler gas flow control. This loop has a very slow response
and it cannot handle process disturbances of the plant.

We propose to use an MPC strategy to control the outlet
temperature of the plant. The manipulated variable is the gas
flow. Using the gas flow as the manipulated variable is not
a new approach, since it was previously proposed in [17].
However, in this work, we extend this previous research by
making the following contributions: (i) we prepare a real
implementation of the proposed control strategy using MPC
and, (ii) control the whole plant outlet temperature, not only
the boiler temperature as originally proposed in [17].

The structure of the paper is as follows. In Section II, we
give motivation to this work. In Section III, the process is
explained and a model is obtained. In Section IV, we design
an MPC strategy for the particular application. In Section V,
we consider aspects of simulation and the real implementation.
In Section VI and VII, conclusions and discussion are given,
respectively.

II. MOTIVATION

Natural gas is an extremely convenient fuel with a stable
calorific value. The gas boiler process is nonlinear, however
the non-linearity does not depend on the fuel quality. In con-
trast, bio-fuel boiler is a nonlinear process which does depend
on the type of fuel being used. Moisture and raw material
affect calorific value of the fuel [13]. Varying non-measured
calorific value makes bio-fuel boiler modeling complicated.
MPC would not perform appropriate in such a boiler control
because a linear process model can be too different from the
actual process when fuel is good (high calorific value) or when
fuel is bad (low calorific value). Calorific value of the fuel is
not measured on-line, so it is not possible to use it in control.
That is why we considered a fuzzy control strategy for the
bio-fuel boiler in one of our previous works [18].

On the contrary, if gas boiler fuel does not influences pro-
cess nonlinearities, and if we are confident that the identified
model is accurate enough within a certain range of operation,
then we can consider applying an MPC strategy.

In a previous work [17], we have shown, through simula-
tions in Matlab, that there may be some improved performance



Fig. 1. Process diagram.

TABLE I
MODEL INPUTS AND OUTPUTS.

Input/output Description
Input 1 Gas flow
Input 2 Boiler water flow
Input 3 Plant water flow
Input 4 Inlet water temperature

Output 1 Boiler outlet temperature
Output 2 Plant outlet temperature

of the process when an MPC strategy is considered. This
advantage comes from comparing performance of MPC with
a standard PI controller. In this work, we want to expand
on these findings, and propose a real implementation of the
control strategy suitable for the real-life process.

III. PROCESS MODEL

Process layout is shown in Fig. 1. Only devices related to
the considered control loop are shown.

After passing through the power unit (not shown in the
layout), part of the water flow with measured temperature is
delivered to the water boiler, where it is heated with natural
gas. Remaining water flows through a by-pass line. After
exiting the boiler both flows are mixed and resulting flow
and temperature are measured on the plant output. Inputs and
outputs listed in Table I are used for deriving the dynamic
model of the process.

For testing purposes, two different models of the process
at different operating points are created. One model is for
process simulation and the other one for MPC design. This is
with the purpose of having a simulation closer to reality, where
the process model normally is not able to reflect exactly the
real process behavior. If we succeed in such a challenging
simulation, then it is highly probable that MPC will also work
for the real process.

We propose to identify a model in state-space:

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) +Du(k)

, (1)

where u(k) ∈ Rnu , x(k) ∈ Rnx , and y(k) ∈ Rny are the
input, state, and the output of the system, respectively.

Using the model equations given in (1), we propose to
identify two models of the process at different operating
points.

TABLE II
MODELS OPERATING POINTS COMPARISON.

Input/output Process MPC
Min Max Min Max

Gas flow, Nm3/h 3000 11500 5500 13000
Boiler water flow, m3/h 1220 1330 1295 1370
Plant water flow, m3/h 1500 4000 2900 4600

Inlet water temperature, ◦C 58 75 55 64
Boiler outlet temperature, ◦C 80 128 95 135
Plant outlet temperature, ◦C 74 86 76 94

Upper and lower limits of the process data used for identifi-
cation are listed in Table II. This table shows some overlapping
in the operation points.

Models were identified with the Matlab System Identifi-
cation Toolbox [8] using state-space models by means of
Predictive Error Method (PEM) estimation.

Here, we distinguish two cases in the modeling.

A. Process model for simulation

Process model was identified using data sets collected from
the process in the periods 2014.02.27 16:53 – 2014.03.06
22:48 and 2015.10.30 0:00 – 2015.11.06 12:52, 7634 and
6199 samples, respectively. Data sampling interval is 1 minute
which is enough to obtain a reliable representation of such a
slow process. Resulting model is:

A =




0.3589 −0.07221 −0.1482 0.05587
0.2856 0.9659 −0.1358 −0.2506
−0.7532 0.1398 0.4404 −0.08773
−0.03067 0.2475 −0.207 0.7836


 (2)

B =



−1.266 −0.9273 3.994 −728.6
2.514 −2.471 1.859 676.6
1.853 3.958 7.8 47.22
1.797 14.56 0.7359 714.9


 · 10−5 (3)

C =

(
−64.75 −18.78 46.79 −31.42
−29.62 −37.28 13.03 −5.59

)
(4)

D =

(
0 0 0 0
0 0 0 0

)
. (5)

B. Process model for MPC

Model for MPC is identified from the data collected during
the period of 2015.02.11 0:00 – 2015.02.24 23:59. 13502
samples were used. Sampling time is also 1 minute. Resulting
model is as follows:

A =




0.7598 0.01881 0.3164
−0.02674 0.86 0.2066

0.3779 −0.1196 −0.1004


 (6)

B =




5.804 −5.332 0.9552 605.7
2.572 7.023 −3.891 557.3
−14.19 17.86 −1.721 −1161


 · 105 (7)

C =

(
54.09 2.848 19.75
16.54 27.72 8.731

)
(8)



TABLE III
MPC JAVA APPLICATION THREADS.

Thread Function
1 Command line scanner to read user’s commands
2 Modbus/TCP interface to communicate with DCS
3 MPC to calculate optimal process inputs

D =

(
0 0 0 0
0 0 0 0

)
. (9)

This model will be used for the design of an MPC described
in the next section.

IV. MODEL PREDICTIVE CONTROLLER APPLICATION

A. Java application

MPC is implemented in Java programming language as a
command line application. As a first stage, we have chosen
to implement the unconstrained case. The constrained case
requires further programming in Java, and the implementation
of an interior-point method, see e. g. [15], which makes
the Java programming more complex. It is considered to
implement constrained MPC in a future development of this
work.

Java is not the most efficient programming language [10],
[20], but it is convenient, reliable and supports cross-platform
execution. The latter characteristic can be useful in the future,
providing more freedom for a real process control implemen-
tation. Java program is compiled to the platform independent
byte code that is executed in platform dependent Java Virtual
Machine (JVM). This type of execution requires compilation
from byte code to machine code in real-time. Each application
method is compiled on the fly when it is called by the program.
This can cause processing overhead for real-time compilation.
Java uses Jast-In-Time (JIT) compilation to avoid it. JIT
compiles program methods once during program execution
when they are called and stores them in memory for later use.
As our program is cyclical, processing overhead for online
compilation should be minimal.

We need an MPC application that supports the following
functions:
• read configuration from the file,
• communicate with the process via Modbus/TCP,
• calculate optimal inputs for the process,
• interact with the user via command line interface (CLI).

As Java is multi-threading programming language by its na-
ture, it is possible to build these functions as separate threads.
Application structure is shown in Fig. 2. The main thread that
starts all other functions is created first. It starts separated
threads for the functions listed in Table III.

MPC thread reads process model and MPC parameters from
an XML configuration file.

Modbus thread reads its configuration parameters from
another XML file. Modbus implementation is based on Jamod
library [7].

MAIN 

THREAD

MPC 

THREAD

Modbus/TCP 

THREAD

USER 

INTERFACE 

THREAD

XML 

CONFIGURATION

DCS
XML 

CONFIGURATION

CONSOLE 

WINDOW

Fig. 2. MPC application structure

The CLI shows model, MPC parameters and Modbus pa-
rameters loading status after the application has started up. By
default it does not provide any other information, but it accepts
a variety of commands from the user to force the application
to write useful information to CLI, such as calculated optimal
process input, prediction vector, process input moves, etc.

When the application is running, it reads process values
from the DCS via Modbus interface, calculates optimal process
input and writes it back to the DCS via Modbus.

B. MPC algorithm

In MPC we aim to optimize a cost function defined as [9]:

V (k) = ||Z(k)− T (k)||2Q + ||4U(k)||2R, (10)

where Z(k) is the outputs prediction vector within prediction
horizon Hp, T (k) is set points trajectory within Hp and
4U(k) is vector of process input moves (changes) within
control horizon Hc. Z(k) is calculated as:

Z(k) = ΦX(k), (11)

where

Φ =




C 0 · · · 0
0 C · · · 0
...

...
. . .

...
0 0 · · · C


 .

The predicted states can be written as:

X(k) = Ψ̂x(k) + Υ̂u(k − 1) + Θ̂4U(k), (12)

where

X(k) =




x(k + 1|k)
...

x(k +Hp|k)


 , 4U(k) =




4u(k|k)
...

4u(k +Hu − 1|k)


 ,

Ψ̂ =




A
...

AHp


 , Υ̂ =




B
...∑Hp−1

i=0 AiB


 ,



Θ̂ =




B · · · 0
...

. . .
...∑Hu−1

i=0 AiB · · · B∑Hu
i=0A

iB · · · AB +B
...

...
...∑Hp−1

i=0 AiB · · · ∑Hp−Hu

i=0 AiB




.

Ψ̂ is the matrix used to calculate the effect of current states
to the states in the future within the prediction horizon Hp, Υ̂
is the matrix used to calculate the effect of the latest process
inputs to the future states and Θ̂ is the matrix used to calculate
the effect of future input changes to future states. Hu is control
horizon (number of control actions into the future),. u(k +
i|k) = 0 for each i > Hu with Hu ≤ Hp. Thus:

Z = Ψx(k) + Υu(k − 1) + Θ∆U(k), (13)

where Ψ = ΦΨ̂, Υ = ΦΥ̂ and Θ = ΦΘ̂.
Tracking error between free response and tracking trajectory

in this case can be written as:

E(k) = T (k)−Ψx(k)− Υu(k − 1), (14)

where free response means the prediction of model outputs for
the whole prediction horizon, if4U is always zero vector—no
input moves assumed.

After this the cost function can be expressed:

V (k) = ||Θ∆U(k)− E(k)||2Q + ||4U(k)||2R. (15)

This can be brought to the form (refer to [9] for details):

V (k) = const−4U(k)TG+4U(k)TH4U(k), (16)

where G = 2ΘTQE(k) and H = ΘTQΘ +R.
To find the optimal 4U(k), we set the gradient of V (k)

equal to zero, thus obtaining:

∇4U(k)V = −G+ 2H4U(k) = 0. (17)

Then the optimal future input changes are given by:

4U(k)opt =
1

2
H−1G. (18)

Once the optimal process inputs are computed, we only take
the first element, apply the control action, and send it to the
DCS. Once this step is finalized, we apply the same concept
in a receding horizon strategy.

As we have different process model for simulation and for
the MPC design, it is not possible to guarantee zero tracking
error. If we do not measure the real output and do not restore
model states respectively, then an offset appears between MPC
model output estimation and the real process outputs. When
model output is close to the set point, real process output value
can differ significantly. As models are too different, MPC finds
a steady-state point where it estimates that no updates to the
control law are necessary and the process output should reach

the set point without any additional actions. However, this is
not the case, and the process does not converge to the set
point because it has a slightly different behavior than the one
predicted by the model of MPC. As a result, a static control
error appears.

We decided to try a simple approach to solve the problem.
We augment the model with extra states that will compensate
the offset in each cycle of process states and outputs estima-
tion. This augmented model has the following form:

Â =

(
A 0
C 0

)
, B̂ =

(
B 0
0 −I

)
, Ĉ =

(
C −I

)
, (19)

where I is identity matrix and 0 is zero matrix of suitable
dimension.

Extra states and extra inputs are added to the model. Extra
input vector Uext consists of measured process outputs. Extra
states are calculated as follows:

Xext = CX − Uext, (20)

where X is a vector of original states, Xext is a vector
of offsets between model outputs and real measured process
outputs. It is calculated every execution cycle and subtracted
from the original model output vector using −I in matrix Ĉ.

Unfortunately the same model cannot be used to calculate
the optimal process input due to problems with scaling. Co-
efficients of augmented states (matrix C) and inputs (identity
matrix) are significantly higher than coefficients of original
states (matrix A) and inputs (matrix B). While making pre-
diction MPC multiplies states with matrix Â and inputs with
matrices Â and B̂ many times. This leads to domination of
augmented states in prediction calculation thus masking the
effect of original states and inputs. To avoid this, we use
another approach. For prediction, we augment the model in
a different way:

Ã =

(
A 0
0 I

)
, B̃ =

(
B 0
0 0

)
, C̃ =

(
C −I

)
. (21)

In this case offset is fixed for all prediction steps and any
effect of the original input change will be correctly transferred
to the model output. This model is much better for prediction
than the original one, because it does not suffer from output
offset, maintaining the original model behavior.

V. MPC IN SIMULATION ENVIRONMENT

After process model has been obtained, a simulation en-
vironment is developed to transfer the results to a real-life
application. Simulation is built with Java function block of
DCS software. A simple Java code block is created. It reads
matrices A, B and C of the state-space model as well as
process inputs values and calculates model states and outputs
using (1).

Without loss of generality, we initialize the model with
x(0) = 0. Model is run in DCS run-time environment in a
4-second cycle. Simulation is carried out 15 times faster than



real process intentionally to make testing faster without need
to wait for long process transients.

MPC application is developed in Java using Eclipse de-
velopment environment in Debian Linux. It uses TCP/IP
network to communicate with DCS and can be located in
the same computer with the process simulation or in any
other accessible through the network. DCS process simulation
runs under Windows OS. After a functional version of MPC
application was released, it was used on the same computer
with DCS process simulation.

To make simulation environment ready for testing we need
to only prepare communication with the MPC application us-
ing Modbus/TCP interface that is supported by DCS. Related
configuration was prepared with DCS role in communication
as slave and MPC application as master.

After MPC application has started, it shows to the user
that all the parameters (Modbus/TCP settings, model, MPC
settings) have been loaded. As the applications acts as Modbus
master, it sends requests to the configured slave. In case of
no response, the application quits informing the problem to
the user. If slave (DCS process simulation) is also configured
correctly and is on-line, then communication is established.

It is also important to secure the control system from com-
munication problems or any MPC application functionality
issue. For these purposes keepalives are used, binary signals
that switch their values after a predefined period of time. One
signal is generated by the Modbus thread every 2 seconds,
another one by the MPC thread in each execution cycle.
These signals are also sent through Modbus interface to DCS.
The later has a timeout 5 seconds for Modbus thread signal
and 10 seconds for the MPC thread signal. Time counter of
each signal is reset when related signal changes its value. If
timeout period is exceeded in any counter, DCS diagnoses
MPC application fault, freezes manipulated input value and
gives an alarm to the operator.

MPC application reads all relevant process variables listed
in Table I as well as output set points. All of these variables are
used to calculate current states of the model (including offset
compensation in current step) and optimal process input for
the next cycle.

In this case only Input 1 is controllable. All other process
inputs are measurable disturbances. MPC application calcu-
lates the optimal value for the gas flow only and sends it to
DCS via Modbus interface.

DCS graphical user interface is shown in Fig. 3. Basic
process layout is depicted on the display. All inputs and
outputs are placed on the positions where they are measured
in the process. Process inputs that are not controlled—water
flow through the boiler, water flow through the plant and
boiler inlet temperature—can be modified by the user directly
simulating process disturbance (in reality these are modified
by other parts of the process). Process outputs—boiler outlet
temperature and plant outlet temperature—are calculated by
the simulation model in DCS. These are shown at the bottom
of the corresponding value boxes. Upper parts are relative set
points that can be modified by the user.

Fig. 3. DCS user interface.

Trends for the outputs and for the controllable input are
added to better understand simulation results. These are up-
dated in real time.

Process simulation can be operated in three modes. Mode 1
is manual. Operator can modify process inputs (including gas
flow) and observe resulting outputs values. For mode 2 PI
controller is used in DCS. Related data box is right under the
gas pipe on the display. PI controller measures plant output
temperature and controls gas flow to keep temperature close
to set point. All other inputs can be modified by the user. The
controller is made only for simulation purposes. This loop does
not exist in the real process control system. PI controller was
tuned using direct synthesis method [1]: kp = 1.24, ti = 10.
In mode 3 gas flow value is calculated by the MPC application.
User can also modify other inputs of the process model.

In the current work, only the plant output temperature is
of interest. There is no need to control boiler output because
we assume that this output is maintained within the normal
range of operation (between 80 to 140◦C). In the real world,
the boiler is operated in conditions where its output is in the
range of 85 to 125◦C. Because we control a slow process,
it is not possible that the output goes outside of the normal
operating condition without the operator seeing it. If this
happens, then the operator can take corrective actions. Of
course, MPC including constraints would be ideal in order to
take these limitations into account. Nonetheless, unconstrained
MPC can also operate in these circumstances. We keep boiler
output temperature in the model for later use in the future
continuation of this work.

To tune the MPC strategy, we consider that the plant
temperature output is the main point of interest. Weights for
Output 1 (boiler output temperature) and for Output 2 (plant
output temperature) are set to 0.1 and 350, respectively. These
values are found by trial and error.

We also need to penalize input changes to prevent overre-
action in the gas flow, making the whole system unstable. We
find that a suitable weight for this case is 0.1.

Testing of MPC (in the simulation framework) will be per-
formed by giving an extreme disturbance that cannot happen



Fig. 4. Simulation results.

in the real world. By doing this, we want to assess whether
the MPC application is able to stabilize the process in such
extreme conditions. In case of success, there is a high chance
of having a stable control in the real process. The disturbance
is chosen as a instant decrease in the boiler inlet temperature
by 2◦C. In real operations, this value only changes around
±0.2◦C/min.

Simulation results are shown in Fig. 4. Also DCS PI-
controller result is added to the trend. We can see that PI-
controller behavior is similar to MPC result, but MPC shows
a quicker reaction.

The main purpose of this work is to assess whether MPC is
capable of making the closed loop stable, and to overcome
the possible difficulties in the implementation of the MPC
strategy in the real world. We also performed other tests with
other large-scale disturbances. In all those cases, we obtained
a stable closed-loop.

VI. CONCLUSION

An MPC application was developed in Java as a stand-alone
software application. It was tested in a simulation environment
close to real-life conditions. Real DCS run-time environment
was used for this purpose. Modbus/TCP protocol was applied
for communication between MPC and DCS. Similarly, this
MPC application can be applied to any process controlled by
any DCS or PLC, since Modbus is one of the most widely
supported industrial protocols.

From simulation results we can observe that MPC is able
to control system’s behavior adequately. Next step will be to
implement this MPC strategy to the real-life process control.

VII. DISCUSSION

Unconstrained MPC is straightforward to implement, but it
is not sufficient for controlling the process in the whole range
of operation, because it does not take into account any physical
limitations of the process. In some circumstances its control
action can be inadequate. In the future it would be of interest
to implement constrained MPC with an improved augmented
model.

Also command line interface cannot be considered as a
modern way to interact with the user. In a later stage, it is
planned to build a web-based human-machine interface.
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