
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Mark Sisin 201628IASM

Practical Implementation of “Sim-to-Real”
Deep Reinforcement Learning Control for

Inverted Pendulum System

Master’s Thesis

Supervisors

Saleh Ragheb Saleh Alsaleh
Early Stage Researcher

Aleksei Tepljakov
Senior Researcher

TALLINN 2022

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Mark Sisin 201628IASM

Kinnitusega süvaõppe rakendamine
pöördpendli süsteemi juhtimiseks

Magistritöö

Juhendajad

Saleh Ragheb Saleh Alsaleh
Nooremteadur

Aleksei Tepljakov
Vanemteadur

TALLINN 2022

Declaration of Originality

Declaration: I hereby declare that this thesis, my original investigation and achieve-
ment, submitted for the Master’s degree at Tallinn University of Technology, has not
been submitted for any degree or examination.

Deklareerin, et käesolev diplomitöö, mis on minu iseseisva töö tulemus, on esita-
tud Tallinna Tehnikaülikooli magistrikraadi taotlemiseks ja selle alusel ei ole varem
taotletud akadeemilist kraadi.

Mark Sisin

Date: May 24, 2022

Signature: .

Abstract

The following work describes how it was possible to use “sim-to-real” learning to
design the deep reinforcement learning controller for the inverted pendulum. The
“sim-to-real” learning is the branch of transfer learning that deals with transmitting
knowledge from virtual environments to real-world applications. By following the
“sim-to-real” methods, the controller for the inverted pendulum has been created
from experience obtained from its digital twin. After optimizing the dynamics of
the virtual model using the System Identification method, it was possible to reduce
the training time for the physical twin by three times compared to the controller
trained without prior experience. The paper also shows the suggested design of
a deep reinforcement learning platform, a software library that aids in connecting
the reinforcement learning training agent with control objects that lack a direct
mechanism of communicating observations with the training agent. Throughout the
research document, the reader will get familiar with all the technical steps required
to achieve a successful “sim-to-real” experiment.

The thesis is in English and contains 86 pages of text, 8 chapters, 14 figures, 7 tables.

KEYWORDS: deep reinforcement learning; Simulink; “sim-to-real” learning; in-
verted pendulum;

4

Nomenclature

AI Artificial intelligence
API Application programming interface
DDPG Deep deterministic policy gradient
DRL Deep reinforcement learning
GAE Generalized Advantage Estimate
GUI Graphical user interface
MDP Markov Decision Process
PID Proportional-integral-derivative
PPO Proximal policy optimization
PWM Pulse-width modulation
RL Reinforcement learning
RMSE Root-mean-square error
SOTA State-of-the-art
TCP Transmission control protocol
TRPO Trust Region Policy Optimization
UDP User datagram protocol

5

Contents

1 Introduction 11
1.1 Problem statement . 13
1.2 Contribution . 14
1.3 Thesis outline . 14

2 Prior work 16
2.1 Application of deep reinforcement learning in the control applications 16
2.2 Deep reinforcement learning in the domain of transfer learning 18

3 Methodology 21
3.1 Reinforcement learning preliminaries 21

3.1.1 Value function . 22
3.1.2 Generalized Advantage Estimate 22
3.1.3 Deep reinforcement learning 23
3.1.4 Proximal Policy Optimization 24

3.2 System Identification preliminaries 24
3.2.1 Open-Loop Identification preliminaries 25
3.2.2 Optimization preliminaries . 25

4 The proposed deep reinforcement learning platform 28
4.1 Implementation architecture . 28
4.2 Training sample controller for use case from external application . . . 30

5 Experimental Setup with the DRL platform 35
5.1 Description of the inverted pendulum system 35
5.2 Mathematical model of the inverted pendulum system 37
5.3 Control objective of the inverted pendulum system 39
5.4 Creation of Platform Environment for the inverted pendulum 42
5.5 Configuration of Simulink models for operation with the DRL platform 44

6 Experimental Results with the DRL platform 46
6.1 Training section . 46

6.1.1 Training procedure for the virtual pendulum 48
6.1.2 Training procedure for the physical pendulum 50
6.1.3 “Sim-to-real” training of the pendulum 53

6.2 Comparison of the controllers . 61

7 Discussion 65

6

7.1 Main benefits . 65
7.2 Main problems . 66
7.3 Possible future steps . 67

8 Conclusions 68

References 70

A Non-exclusive license 74

B Software interfaces and classes 75

7

List of Figures

1 The schematic representation of the classic RL problem. Based on
the Environment state and reward, the Training Agent decides the
action to pick. 21

2 Open-Loop Identification of the inverted pendulum system. The Chirp
signal generator provides the sinusoidal action input to both physical
and digital twins of the model at the same time. As models are
executed simultaneously, the time alignment of the output data is
guaranteed. Each twin outputs the observation states to the data sinks,
which allow storing identification data for the future optimization
experiments. 25

3 Proposed architecture of the DRL platform. The main architecture
is located in a central block. The DRL controller is represented by
a custom DRL library. The external application is an interface of
communication with virtual or physical models. 30

4 The sample pendulum environment in Simulink. The pendulum itself
is located in a digital twin block, that accepts the action input from
Data hub, and sends the observations output to the data hook. . . . 32

5 Results of solving the sample pendulum environment. The graph 5a
demonstrates the convergence of model to stable reward. The graph
5b shows how the converged model was able to control the sample
system during the series of episodes. 34

6 INTECO inverted pendulum system 36
7 The schematic representation of pendulum system [1]. The pendulum

rotates in a vertical plane on the axis located in cart. The cart moves
horizontally on a rail due to the applied force parallel to the rail. . . 37

8 The summarized interaction of Platform Environment with the training
agent. The controller sends the action to the INTECO Pendulum
Platform Environment for each step. This environment sends an
action to an actual pendulum and returns the latest observation with
a calculated reward back to the training DRL controller. 41

9 The Simulink control schemes for digital/physical twins of the inverted
pendulum. The Figure 9a shows the layout for the digital twin, and
the next Figure 9b shows the layout for the interaction with a physical
system. 44

8

10 The controller’s training trend for a virtual twin of INTECO pendulum.
An overall tendency shows the sudden rise in mean episode reward.
The controller has achieved a mean episode reward of 400, which is
suitable for the control objective, after 280 000 training steps. 49

11 The controller’s training trend for a physical twin of INTECO pendu-
lum. The mean episode reward convergence is observed after 400 000
steps. 52

12 The observations from digital and physical twins under the same
action input. The observations include cart position and its velocity,
pole angle and its angular velocity. The results show the fundamental
misalignment in dynamics between two systems. 55

13 Results of the optimization of the digital twin of the pendulum. Both
digital and physical twins were provided the single input in form of
sinusoidal signal of varying frequency. To have identical dynamics, the
trend for both physical and digital twins should coincide. The graph
13a shows how the behavior of unoptimized model has been different
from actual pendulum. The graph 13b illustrates how dynamics
became closer to the physical twin after the Nelder-Mead optimization. 58

14 Trends of training of the controllers in “sim-to-real” use case. In 14a
the controller is being trained on the optimized version of digital twin.
In 14b we start the training from a checkpoint of the controller from
the virtual model. 60

9

List of Tables

1 Parameters of the mathematical model of the inverted pendulum system. 40
2 The PPO hyperparameters used for INTECO training 47
3 Results of the training per various sample time 49
4 List of “sim-to-real” methods for DRL 54
5 Virtual model configurable parameters 59
6 The behavior of RL model at different reward slices 63
7 Comparison of the controllers trained during the experiment. The

results include the mean reward which was achieved at a specific step
during the training. As well, training time to achieve that step is given. 64

10

1. Introduction

Nowadays, the revolutionary idea of digital transformation of the industry has shown
a significant impact in real life [2]. The reduction of machine downtime, a decrease
in maintenance costs, and the overall increase of productivity of technical professions
are expected to come with the digitation of industrial processes. The described
trend is named Industry 4.0, and many scientific fields are trying to adopt the
benefits of this transformation. For instance, the domain of Systems and Controls
has recently become an irreplaceable part of the design of the complex engineered
systems due to its coupled usage with virtual environments [3]. In various control
applications, scientists constantly utilize mathematical models, as they can provide
the understanding behind the system’s dynamics without having an actual physical
system in first hands. But in present times, as the technology advances and the
complexity of industrial processes increases, the problem of having the wide gap
between physical and digital systems has become sharper than ever before. The
same authors have classified this issue as data-driven modeling and control, which
is currently one of the most significant innovation challenges in the Systems and
Controls domain.

The challenge of data-driven modeling has already been addressed in different use
cases. One of such novel concepts in the field of Systems and Controls is the digital
twin, a virtual representation of the real-life entity or process at a certain fidelity
[4]. For example, this article [5] shows the digital twin prototype of the multi-tank
system in Extended Reality. The authors tuned the proportional-integral controller
for the digital twin during the experiment. At the same time, the actual tank
experienced the changes in water level according to the parameters set in the virtual
environment. As a result of this experiment, it was possible to control the tank’s
liquid level by interfacing the real object through its digital twin. This allows to
perform the laboratory training and controller tuning in Extended Reality without
directly interacting with the physical system of interest.

Suppose a sufficiently accurate digital twin of the system exists. In that case, it can
help address the problem of data-driven control, where the tuning of the controller
can be done purely in a virtual environment. For instance, such tuning can be done
with the help of reinforcement learning (RL), a branch of machine learning that
uses the training agent to interact with a specific environment [6]. Based on the

11

results of interaction with the environment, the RL learns a policy, the particular set
of rules that indicate the best action for the training agent to take at the current
state of the environment. The exciting achievements in the field of RL, such as
the AlphaGo [7] algorithm for solving one of the most challenging classic games for
artificial intelligence, increased the popularity of the deep reinforcement learning
(DRL) in various fields, like games, robotics, and computer vision to name a few
[8]. Referencing the same paper, deep reinforcement learning is a particular branch
of reinforcement learning, where policy learning is linked with the deep learning
principles. One of the main advantages of the DRL is model-free controller design,
so the user does not need to know the full dynamics of the system of interest. Also,
the utilization of neural networks allows the DRL to operate the complex nonlinear
system, as the neural networks can adapt to particularly complicated dynamics. There
are numerous examples of DRL usage in complex control applications [9, 10, 11].
The referenced papers use robotics simulators to train the controller in pendulum
stabilization, mapless navigation, and automated liquid pouring. The model-based
control approach for mentioned use cases would require understanding sophisticated
robot dynamics, which actually made the model-free DRL controller an excellent
choice for operation.

However, the main advantages of this control method carry along with the significant
drawbacks that limit the use for real-life control applications [8]. The DRL is not
sample efficient, and it requires a lot of training data to design the optimal controller.
The same authors claim that it is often impossible to afford that for real-life control
objects due to safety, time, or cost constraints. But this limitation can be resolved
by using the transfer learning methods. The tuning of the controller on the physical
device from experience perceived in a digital environment is called the “sim-to-real”
learning [12]. The “sim-to-real” learning is the sub-field of transfer learning that
identifies the methods that help to use the digital twins to control real equipment.
Once training of the controller finishes on a sufficiently accurate virtual model, the
“sim-to-real” methods allow this controller to be seamlessly attached to an actual
object. As virtual environments represent an infinite source of experience for DRL
algorithms, the issue of excessive use of training data could be resolved. Thus, the
“sim-to-real” learning correlates with the data-driven control innovation challenge
in the Systems and Controls domain. However, referring to the same authors, the
“sim-to-real” learning in the DRL field contains many open problems currently under
active research. The main problem is that for successful transfer learning, the digital
twin of the control object has to be sufficiently accurate. But accuracy of the

12

mathematical model depends on the use case. There are no uniform steps that
would always guarantee the reduction of the gap between the physical and digital
worlds. An additional problem, explicitly related to the DRL and control applications,
highlights no common interface of interaction between the training controller and
the control objects. Generally, the DRL training happens in Python, and it can not
communicate with control objects without the custom integration script that creates
a link between them.

In the current research, the DRL controller for a cart-pole-based inverted pendulum
system has been designed with the help of “sim-to-real” learning methods. The
created DRL model gained an experience from the digital twin of the pendulum in
order to reduce the training time on the actual device. To enable the communication
between the controller and digital and physical twins of the pendulum, the unique
software bridge was created for sharing the data between the Python code and control
objects. This bridge has been called the deep reinforcement learning platform, and
it is available as the separate Python package [13].

1.1. Problem statement

The limitations of the DRL in the field of “sim-to-real” learning are conditioned by
multiple open issues [12].

The main problem is that the knowledge transfer from a virtual environment to a
physical world is bound by the misalignment in systems’ dynamics. Generally, digital
twins can represent the dynamics of a physical twin with a certain level of fidelity,
but transferring the control from the digital world to the real object requires very
accurate mathematical representations. Though the guideline methods for solving
this issue are available, the solution to the “sim-to-real” problem is always specific to
a use case.

Moreover, the recent state-of-the-art (SOTA) training algorithms for the DRL are
only available in Python due to dominant computational backbone libraries, which are
generally used for every machine learning problem. However, the control objects are
usually not operated through Python. Their interface for operation varies depending
on the manufacturer. For example, the control object can be operated in Simulink
software, a programmable logic controller, or in any other form supported by the

13

manufacturer. Thus, there is no direct integration between the Python code and
interfaces for operating control objects. It means that DRL training for actual
equipment requires custom integration scripts, which are also developed for a specific
use case.

1.2. Contribution

The main contribution of this research is the creation of the DRL controller for the
inverted pendulum that used the knowledge obtained from the digital twin using
the “sim-to-real” learning. The virtual model of the pendulum was optimized by
employing the System Identification method to achieve success in transfer learning.
As a result of knowledge transfer, the training time for the physical system of interest
has been reduced by three times, compared to the controller trained on the pendulum
without applying the “sim-to-real” methods.

The training of the DRL controller has been performed in Python, though the
interface for operating digital and physical pendulums was in Simulink software. The
current work has proposed a special software bridge called the deep reinforcement
learning platform to share the data between the training algorithm and the system of
interest. The DRL platform enabled the data transfer between the controller, which
was trained in Python, and the operating interface of the pendulum, available in the
Simulink application. This platform is available as a separate Python package, and it
can be applied to any control object whose operating interface supports networking
protocols.

1.3. Thesis outline

The paper is organized in the following way. In Section 2, the literature review has
been provided. The study describes the recent advancements of DRL in a domain of
control and its status in a field of “sim-to-real” type of transfer learning. In Section
3, the most crucial paper methodology is given. In Section 4, the design for the DRL
platform is proposed, and the architecture principles are described and explained
by bringing along a sample example. In Section 5, the experimental setup of the
system of interest with the DRL platform is described. In Section 6, the controllers

14

for digital and physical twins of the system of interest are trained. Then, it explains
how it was possible to optimize the virtual model and build a new type of controller
to solve the “sim-to-real” problem. In Section 7, the discussion about the benefits of
the DRL platform, its problems, and the next steps are present. Finally, in Section
8, the paper is concluded.

15

2. Prior work

2.1. Application of deep reinforcement learning in the control

applications

The practical application of reinforcement learning in simple control use cases has been
thoroughly investigated in [14]. According to the research, there were fundamentally
two groups of methods when dealing with control theory: artificial intelligence (AI)
and adaptive dynamic programming. Unfortunately, both can not guarantee an
optimal solution and robust solution. However, a significant scientific effort has
recently been spent in DRL to solve these issues.

The main benefit of reinforcement learning is that it does not require a complete
understanding of the process dynamics. Hence, it is model-free compared to the most
dynamic programming methods used to create the controllers. The same article [14]
also states that nowadays, temporal-difference learning is the most popular way to
design the RL control for discrete-time systems with finite state and action spaces.
Temporal-difference learning, which is usually called Q-learning, has been showing
good results at various control optimization objectives because of the reinforcement
learning’s ability to explore and exploit an unknown environment. In [15] the Q-
learning was used to control the liquid level in a conical tank system. The authors
have split the state and action space at finite-space metrics and conducted the model
training on a tank simulation in a MATLAB environment. The trained model has
been applied to a physical tank system, where the produced Q-map of the action-
state reward table was optimized in a runtime. In the end, the Q-learning controller
achieved the needed liquid level with accepted accuracy of 1cm below and above the
setpoint.

However, the temporal-difference learning and conical tank system described above
have specific problems. First of all, temporal-difference learning can not guarantee
the stability requirement for the system control [14]. Secondly, more complex control
objectives do not have the finite-space representation of action and state spaces.
Thus, Q-learning can not be applied to every controller design, requiring a novel
control approach.

16

The DRL is the branch of reinforcement learning that uses the neural network as
function approximations to find the optimal policy for taking actions with the best
long-awaited reward. One of the first DRL algorithms, namely Deep Q Network, was
utilizing the neural network for solving the limitation of finite state-space constraints
existing in temporal-difference learning. However, the limitation of finite action
space has not been addressed. Of course it is possible to discretize the action space,
but this approach leads to a curse of dimensionality and possible loss of action space
dynamics. Paper [16] proposes a new deep reinforcement learning algorithm for
continuous action systems control to deal with action and state-space limitations.
The deep deterministic policy gradient (DDPG) algorithm was designed to deal
with continuous state and action space representations. The DDPG algorithm uses
batch normalization and actor-critic architecture to solve complex nonlinear systems.
The main disadvantage of this method appeared to be the long training episodes,
but in the end, the control performance can outstand the drawback. This is the
novel control approach that allowed to address the problems the standard Q-learning
couldn’t solve.

To bring specific examples with DDPG use cases, the article [17] develops a self-
organizing controller for tracking purposes. Two controllers have been designed to
address the optimality problem, one to move the pendulum in a top-most position
and the other to keep it stable at a required angle. The effectiveness of the system
has been proven with simulation experiments. The paper [18] uses DRL with several
training algorithms, including DDPG. The experiments have been performed within
a virtual environment representing the robots’ digital twins. What appeared is that
the DDPG algorithm was able to control the robot gripper with two parallel fingers
but was not able to operate with the robot that represents a human arm stably. The
article’s authors have used DDPG with the experience replay technique that utilizes a
memory buffer during the training to address this issue. The DDPG with experience
replay converged the cost function during the training and passed the validation
with cube manipulation in a human arm robot. A similar approach of inducing a
DDPG controller with experience replay is described in [19] for path tracking of the
unmanned surface vehicle. This approach was not only trained virtually, but was
also tested in a real marine environment. As a result, the DDPG controller with
experience replay was able to resolve the stability issues during the validation in
a real environment. The trained model was compared with a heuristically tuned
proportional-integral-derivative (PID) controller, which assumes the user knows
the system’s dynamics. The resulting mean error between them and the required

17

objective goal was optimal for the control objective and was not significantly different.
It means that a controller without comprehension of system dynamics was performing
with the same quality as a controller where the system dynamics have been identified,
making DRL a better and faster approach for the design of the controller.

The DDPG is not the only DRL used in control domain use cases. Besides it, the
PPO has been used to create the controller for the stabilization of the quadrotor [20].
The unmanned aerial vehicles are inherently unstable systems, and the PPO was
able to create the control policy to hold the quadrotor in a stable position after 7.5
million training timesteps. The controller held the vehicle close to the setpoint in
two scenarios: static setpoint and dynamic setpoint that moves along the specified
trajectory. The biggest issue appeared to be a steady-state error between the target
position and the stabilized position of the quadrotor. A new reward strategy was
supposed to be applied in the next iteration of the controller to resolve this issue.
The policy has been converged only in a virtual framework, and the experiment
has not been conducted on actual equipment. However, the authors state that the
simulation environment had complex dynamics engines.

Thus, the abovementioned examples prove the applicability of DRL in the control
theory domain. As observed, some authors have based their experimental results
purely on the results in a virtual environment. Other contributors were forcing
the conclusions from the control outcomes on actual equipment. But there were
some articles where the training was based on the virtual and physical environments.
Such an interesting pipeline of training and inference is a particular type of transfer
learning called “sim-to-real”, which appears to be one of the research focuses in the
domain of modern DRL [6].

2.2. Deep reinforcement learning in the domain of transfer

learning

The paper [12] describes the domain of “sim-to-real” training and inference of DRL
models. Based on the research results, the authors have stated that simulation
environments have been constantly utilized for training, especially in the robotics
domain. The paradigm of digital twin training provides a potentiality of infinite
data sources and alleviation of safety constraints. However, nowadays, the “sim-to-
real” approach contains the gaps that decrease the performance of inference of the

18

trained model. The major problem appears to be the absence of standard transfer
learning algorithms that need to be applied whenever the trained controller has
to be used in an actual station, whose dynamics are different from the simulation
environment. The more realistic the simulation is to real life, the better appear to
be the inference results. For this reason, the most commonly identified techniques
are systems identification, domain adaptation, and domain randomization, which
help increase the realism of the virtual environment.

But there is also one problem that arises due to “sim-to-real” training. There is
no standard environment for simulation execution for different use-cases, would it
be a complicated robot-arm manipulation or a simpler control objective, such as
a pendulum. All simulations have to be software compatible for training the DRL
model. Some simulation frameworks, such as MuJoCo and PyBullet, represent the
broader integration with RL environments [12]. However, it is unclear what an
available set of training algorithms in these integration modules and how to use the
most recent SOTA algorithms available in DRL libraries, such as Stable–Baselines,
Tensorforce, or RLLib.

One of the commonly used simulation environments for control applications outside of
the robotics domain is Matlab/Simulink. Simulink does not provide direct integration
with DRL libraries containing SOTA training algorithms. This article [21] explains
how the user can design a controller from the custom OpenAI Gym environment.
But in the case of this article, the training procedure has been implemented within
the internal Simulink RL toolbox. Currently, there is no available solution for using
popular DRL libraries to train the model in the Simulink environment.

Thus, the following research gaps for transfer learning in the domain of the DRL
were identified:

• There are no general rules for training once the system of interest is being run
in an external application. People spend their time creating custom integration
scripts that work only per a specific use case without considering any general
approaches.

• The issues above underline the difficulty of the “sim-to-real” approach in the
design of the DRL controller. Suppose there is no general standard for the
DRL environment and integration with the external applications. In that case,
it might not be possible to obtain a controller that can be seamlessly switched

19

between digital and physical twins.

It is essential to look at the problem of “sim-to-real” training from a generalized
perspective. Despite the software where the control system is being executed, all of
the use cases should be compatible with popular libraries in the RL domain. The
digital-twin-based training should be done in an ad-hoc solution where you can use
the DRL model with a specific algorithm despite the external application. With such
design, the researchers can sustainably use popular libraries without creating custom
integration scripts or training loops for particular algorithms.

Thus, to address those gaps, the special design of the DRL platform is suggested in
this paper. This software abstraction creates a coupling between the RL environment
and the external application where the system of interest runs. Using this platform, it
was possible to develop the DRL controller for the digital twin of the cart pole-based
inverted pendulum, which interface of interaction is given in Simulink. Then the
platform was used in the design of the DRL controller for a real device from the
same use case. Finally, the designed controllers allowed us to find the dynamics’
misalignment in digital/physical twins. Thus, after optimization of the virtual
model, it was possible to reduce the training time for the physical controller by three
times due to the application of the “sim-to-real” knowledge transfer from the virtual
controller.

20

3. Methodology

In this section, the main concepts, algorithms, and mathematical derivations used
in the thesis are introduced to the reader. Firstly, the reinforcement learning
methodology description is given along with the terminology in this domain. Secondly,
the Systems Identification preliminaries are given, which take into account the
concepts of Open-Loop identification and optimization technique, used to reduce the
misalignment between digital and physical twins of the pendulum.

3.1. Reinforcement learning preliminaries

The classic RL problem lies in an interaction of the agent with an environment over
time[6]. At each time step t, the training agent takes action at from the action space
A based on the environment’s observation st from the observation space S. The
illustration of this problem is given in Fig. 1 to understand the sequence of actions
and state observations.

Figure 1. The schematic representation of the classic RL problem. Based on the Environment
state and reward, the Training Agent decides the action to pick.

The selection of action by the training agent is performed through the control
policy π(at|st). The policy determines the behavior of the agent and the probability
P(st+1|st, at) of taking action at given the current environment state st in order to
transition to a next state st+1. Throughout the training episode, the agent receives
the scalar reward rt after performing the action-state transfer. The reward is the
key metric that shows how well the controller can select the most suitable action

21

given the current environment state. The main objective of the agent is to obtain
the best control policy π∗(at|st) that provides the highest episodic reward at time
step t given as follows:

Rt =
∞∑
k=0

γkRt+k+1 (1)

where γ is the discount factor for the future rewards, and k is the episode time step.
Given the k = 0, we obtain the instantaneous reward Rt+1 after performing an action
at at the current time step t. Depending on the discount factor, which takes a range
γ ∈ [0, 1], we value either spontaneous or far-sighted rewards.

While the goal for all agents is to maximize the episode rewards, the ways of achieving
that depend on the training algorithm.

3.1.1. Value function

The value function identifies the total possible rewardR for the environment state s if
the training agent follows the control policy π. This metric is essential for optimizing
the loss function in many training algorithms, such as Proximal Policy Optimization.
Mathematically, the value function can be defined as follows:

Vπ(s) = Eπ(Rt | st) = Eπ(
∞∑
k=0

γkRt+k+1 | st = s) (2)

where Eπ is the expected value of value function given the training agent is following
the policy π at given time step t.

3.1.2. Generalized Advantage Estimate

Overall, the advantage function shows how good or bad was a taken action at

compared to the state value function given in Eq. (2). Mathematically, it can be
expressed in the following way:

22

Aπ(s, a) = Qπ(s, a)− Vπ(s) (3)

and

Qπ(s, a) = Eπ [Rt+1 + γVπ(st+1) | st = s, at = a] (4)

where Aπ is the advantage function and Qπ is the action-value function. The main
disadvantage of the current representation of advantage function is that it is biased
only to the next state value function after performing the action. Ideally, the user
needs to have a possibility to determine how far the advantage function will look
ahead during the optimization of the policy. This possibility is being provided by
Generalized Advantage Estimate (GAE) given as follows:

ÂGAE(γ, λ) =
∞∑
k=0

(γλ)kδt+k (5)

and

δt = Rt + γV (st+1)− V (st) (6)

where δt is the temporal difference error, γ and λ are discount factor and lambda
GAE coefficient respectively. The lambda coefficient allows the user to select how
important the further steps of temporal difference errors are compared to the one-step
temporal difference error.

3.1.3. Deep reinforcement learning

The DRL is used in a context of large state and action spaces, where it becomes
unfeasible to store all possible state-action transitions in the lookup table. Neural
networks are used for the approximation of policy πθ(a | s), value function v̂θ(s) and
the model (state transition and reward functions) [6]. The update of the network

23

weights θ is performed through series of stochastic gradient descents.

3.1.4. Proximal Policy Optimization

The Proximal Policy Optimization (PPO) [22] is the training algorithm that utilizes
the clipped surrogate loss function for an update of neural network weights θ:

LCLIP+V F+S
t (θ) = Êt

[
LCLIP
t (θ)− c1L

V F
t (θ) + c2S [πθ] (st)

]
(7)

where Êt is the empirical expectation over a finite batch of samples at timestep t,

πθ is the controller’s policy given the weights θ, c1,c2 are coefficients, S denotes the
entropy bonus for ensuring sufficient exploration, and LV F

t (θ) is squared-error loss of
the value function

(
Vθ (st)− Vθold

(st)
)2 to ensure that GAE identifies the advantage

increase from the action side and not changed value state function. The significant
part in shaping the optimal weights for the controller policy is the clipped policy
surrogate loss function LCLIP

t (θ) given as:

LCLIP (θ) = Êt

[
min

(
Rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
(8)

and

rt(θ) =
πθ (at | st)

πθold (at | st)
(9)

where Ât is the GAE given in Eq. (5) and ϵ is the hyperparameter.

3.2. System Identification preliminaries

The System Identification field deals with mathematical representations of the real
systems based on measured data. In this paper, the open-loop identification technique
has been applied for digital and physical twins of the pendulum to obtain the error

24

Figure 2. Open-Loop Identification of the inverted pendulum system. The Chirp signal generator
provides the sinusoidal action input to both physical and digital twins of the model at the same
time. As models are executed simultaneously, the time alignment of the output data is guaranteed.
Each twin outputs the observation states to the data sinks, which allow storing identification data
for the future optimization experiments.

in dynamics. Nextly, the obtained data was used during the optimization, which
reduces the difference in dynamics between virtual and physical models.

3.2.1. Open-Loop Identification preliminaries

The Open-Loop Identification technique allows gathering output from multiple
systems executed in parallel against the single action input. Usually, the action input
signal is chosen so that it excites the dynamics of the systems of interest. In the case
of this paper, the input chirp signal with a sinusoidal wave of varying frequency was
chosen to excite the dynamics of digital and physical twins of the inverted pendulum.
The detailed scheme of Open-Loop Identification is given in Fig. 2.

3.2.2. Optimization preliminaries

In this work, the problem of dynamics difference between the digital and physical
twins of inverted pendulum has been addressed. To minimize the error in behavior
for mathematical approximation of the system of interest, it was decided to use the
Nelder-Mead optimization algorithm. It is a non-gradient method that optimizes the
functions with unconstrained multiple input variables [23]. The algorithm creates
the simplex, the convex geometrical figure with x1,x2, . . . ,xn+1 vertices that tries to

25

find the optimal value of the cost function defined as follows:

min F (x) (10)

where F : Rn → R is the cost function having n input parameters. The main
advantage of the Nelder-Mead algorithm is that it is a direct search method, which
is “derivative-free” [24]. It does not construct the approximations of function F and
does not require its derivative information. The Nelder-Mead algorithm finds the
optimal set of n input parameters by iterating through the specific set of operations:
order, reflection, expansion, contraction and shrinkage [25].

1. Order. The first n+ 1 vertices are ordered, so that F (x1) ⩽ F (x2) ⩽ · · · ⩽
F (xn+1) . Because we solve the minimization problem, x1 is referred as the
best vertex, xn+1 is the worst vertex and xn as the next-worst vertex.

2. Reflection. Compute the reflection point xr

xr = (1 + ρ)x− ρxn+1 (11)

where x =
∑n

i=1 xi/n is the centroid of n best vertices except the xn+1, and ρ is
the reflection coefficient. If F (x1) ≤ F (xr) < F (xn), then accept the reflected
point xr and terminate the optimization iteration

3. Expansion. If the cost function at reflected point is lower that the cost
function at the best vertex, expansion point is computed xe

xe = (1 + ρχ)x− ρχxn+1 (12)

where χ is the expansion coefficient. If F (xe) < F (xr), accept expansion point
and terminate the optimization iteration. Otherwise, select the reflection point
and terminate the iteration also.

4. Contraction. If F (xr) ≥ F (xn), perform the contraction between x and the
better of xn+1 and xr.

(a) Outside Contraction. If F (xn) ≤ F (xr) < F (xn+1), calculate the
outside contraction point

xc = (1 + ργ)x− ργxn+1 (13)

26

where γ is the contraction coefficient. If F (xc) ≤ F (xr),accept xc and
terminate optimization iteration. Otherwise, perform the shrinkage step.

(b) Inside Contraction. If F (xr) ≥ F (xn+1), calculate the inside contrac-
tion point

xcc = (1− γ)x+ γxn+1 (14)

If F (xcc) < F (xn+1), accept xcc and terminate optimization iteration.
Otherwise, perform the shrinkage step.

5. Shrinkage. Evaluate the cost function F at new set of vertices from

xi = x1 + σ (xi − x1) , i = 2, . . . , n+ 1 (15)

where σ is the shrinkage coefficient.

The reflection, expansion, contraction and shrinkage coefficients should satisfy

ρ > 0, χ > 1, 0 < γ < 1, 0 < σ < 1 (16)

27

4. The proposed deep reinforcement learning plat-

form

4.1. Implementation architecture

As described in previous paragraphs, the “sim-to-real” domain contains the problems
with control objects running in applications that do not directly connect to the
training loop. It means that some software platform needs to be created that can
guarantee the seamless controller transfer between the physical and digital world.
One can provide the digital twin in differential equations that can be converted into
a script within a programming environment. Other digital twins can be received in
the form of a black box with defined inputs and outputs. For example, MATLAB or
Unreal Engine can encapsulate the digital twin in the platform’s specific container
so that only defined inputs and outputs are available through an environment. In
addition, suppliers of complex industrial equipment can provide embedded simulators,
usually digital replicas with inputs and outputs, and even an application programming
interface (API) that is used to speak with a digital twin or a real industrial asset.
For instance, Universal Robot provides the possibility to deploy the simulator in a
virtualization environment [26]. The user can communicate with the simulator in the
same manner as with physical robotic arm. This simulator supports the entire API
used with a real robot and even the graphical user interface (GUI) for configuration
and control.

Thus, especially considering the last two examples in the paragraph above, the
implementation architecture of the DRL platform must somehow be injectable for
variety of applications. Changing the digital twins to one specific format supported
by the DRL platform would not be possible. Hence, the digital twins should never be
altered to support the principle of the platform generality which tries to be achieved.
However, the digital twins in various applications can not magically speak with the
DRL platform without any modification. That’s why, still, minor adaptation has to
be done to an application to be able to speak with the DRL platform.

The special data hooks and data hubs were designed to address the issue of information
propagation to the DRL platform. This way, the DRL platform does not change
the behavior of the digital twin but will still be able to observe the state and action

28

spaces of the object of interest. It is enough for reinforcement learning to observe the
digital twin’s environment with all necessary twin outputs to provide robust control
with predefined inputs.

The other point the architecture has to support is the possibility of training the
controller using various SOTA algorithms. Implementing different training algorithms
from scratch would make the timespan of the following research too extensive. The
DRL platform has to provide only the environment integration, not the training
agent itself.

Generally, the proposed architecture demonstrated in Fig. 3 should be achieved. One
of its main benefits is the injectability for variety of applications and DRL libraries.

For the platform to be able to speak with the control object, the control object
interface should implement Data hub and Data hook for the information trespass-
ing. These blocks should be able to accept the actions produced by the controller
and output the observations for the controller to make a subsequent action. For
example, the Data hub can be transmission control protocol/user datagram protocol
(TCP/UDP) server accepting the inputs on a specific port, the Data hook can be
TCP/UDP client that sends the observations to the DRL platform. To connect with
Data hub/hook, the platform implements an Environment Server. This particular
object holds the connection with an external application for propagating actions and
forwarding observation for the Platform Environment.

The Platform Environment is the RL environment for training execution. The RL
environment allows the DRL controller to observe the system’s outputs, provide
inputs for action, and get the reward per episode step. The DRL platform offers
compatibility with OpenAI Gym. To understand why it was essential to use the
solution provided by OpenAI, it is important to know why the Gym has been created
in the first sense.

The OpenAI Gym environment is a software abstraction for the RL environments
developed by the OpenAI. Initially, the OpenAI Gym was designed with an idea
of public benchmarking [27]. Hence, for other users to see the performance of
their model against the same problem, the OpenAI team implemented the interface
that helps solve MDP. On the official webpage [28] OpenAI indicates the sudden
urge in the trend of RL popularity recently. Thus, the second most prominent

29

benefit of OpenAI Gym is the environment standardization. Subtle differences in
problem definition, reward functions, and set of actions have created the problem of
reproducing published research. That is why the standard environment from OpenAI
can help in the study within the DRL domain. Pointing it out again, the OpenAI
Gym is an excellent choice for proceeding with, not only because of the simplicity of
the software abstraction but also due to its popularity [29] and easiness of use.

The Platform Environment is the main environment class within the DRL platform.
It allows the user to overwrite the specific implementation of OpenAI Gym step and
reset methods, which are required for the DRL controller. Also, it gives a possibility
to inject the specific Environment Server during the runtime, making the Platform
Environment class flexible during multi-agent training mode.

The DRL controller is an actual training agent library, such as TensorForce, Stable-
Baselines or RLLib. The library is supposed to be selected by the platform user. As
long as it supports OpenAI Gym, it should be compatible with the DRL platform.

Figure 3. Proposed architecture of the DRL platform. The main architecture is located in a
central block. The DRL controller is represented by a custom DRL library. The external application
is an interface of communication with virtual or physical models.

To sum up, the provided architecture diagram represents the modular design of the
DRL controller platform that will be applied at the INTECO inverted pendulum.
The selected design supports the interaction of various modules in one execution,
starting with the trainer agent and finishing with the system’s external application.

4.2. Training sample controller for use case from external

application

The DRL platform is available as a Python package [13] on PyPi webpage. The PyPi
webpage contains a link to the official GitHub repository [30] of the project, which

30

has a detailed description of the available API in the platform. There are also some
notes regarding the creation of compatible custom environments to be used with
the platform. As an example, this paper will show how it was possible to solve a
straightforward synchronous custom RL environment using the DRL platform API.

Before starting, it is required to select the library for the training of a controller.
The article [31] describes the current state of affairs within the domain of DRL. It
provides an overview of multiple libraries used for reinforcement learning. As a result
of this article, the authors have stated that the most suitable libraries appeared to
be Stable-Baselines, Tensorforce, and RL_Coach as they are flexible for research
purposes. As a result, the Stable-Baselines3 [32] library has been selected for training
purposes. The training API of this library contains less initialization overhead, and
there is no problem with injection of parameters, which are required from the software
side of the platform.

The system of interest that has been selected for the testing purposes became the
simple pendulum model provided by the Matlab RL Toolbox [33]. It is a digital
model with a continuous action space that rotates the pole by applying the torque
on the rotational joint. The main goal of this system is to keep the pole stable in an
upright position.

Before proceeding with pendulum training, minor modifications to the Simulink
model are required. These are the main steps to create the Data Input/Output
hub/hooks which are used to connect to the DRL platform:

1. Open the simulation environment in an external application (Simulink, Unreal
Engine, ...).

2. Create the block that initializes TCP or UDP server. This server needs to
be configured such that it would be possible to connect to it from the DRL
platform.

3. Create the block that initializes TCP or UDP clients. This client should be
able to reach the DRL environment server used for the communication. A
client should handle the connections and reconnections.

As shown in Fig. 4, the system consists of a Data Input hub, a Data Output hook,
and the digital twin of the sample pendulum in a center. Both hub and hook have

31

Figure 4. The sample pendulum environment in Simulink. The pendulum itself is located in a
digital twin block, that accepts the action input from Data hub, and sends the observations output
to the data hook.

the address with a port they use to communicate with the DRL platform. The DRL
platform, in its turn, should take into account those values and use them during the
initialization of environment server.

The next step to proceed is the creation of the platform environment itself. The
sample code for the platform environment is given in Appendix B. This example
shows how exactly the interface has been implemented. In the initialization of class,
we identify the observation and action spaces with their limitations. In the case of
the sample pendulum, the action space has been discrete.

The reset function uses the UDP environment server to send the input information
to the Data input hub. As the environment is synchronous, the following received
payload indicates that the Simulink has restored the dynamics in the Digital twin
block.

The step function gets an action as an input, sends this action to the Simulink,
and then receives the corresponding observation past the performed action. Based
on obtained observation, we are calculating the reward per step. The greater the
cumulative reward is, the better model appears. A mathematical explanation of the
reward function in the sample environment is given as follows

Rt = −
(∣∣∣αt

π

∣∣∣− 1
)

(17)

where α is the pendulum angle [rad].

32

The other two properties are needed to set and get the environment server during
the runtime. One can launch the training loop if some training library has been
installed, like Stable-Baselines3 in this code snippet. First of all, the Environment
Server is initialized and connected to the running simulation. The launch of the
server does not block the main thread. Once the connection is set up, it is possible
to proceed to a training loop using the Platform environment.

In the case of this sample, the RL model was able to achieve a stable high reward in
1 hour. The main view of the results of training and inference is given in Fig. 5

The training epoch for the sample pendulum took more time than within the
Reinforcement Learning Toolbox provided by MathWorks. However, in this case, the
network overhead could be an issue. And, of course, MathWorks has a significantly
faster form of execution API when it comes to a trainer embedded in the Simulink.
The trend for this system is given in Fig. 5a. The mean reward of >390 indicates
the system’s optimal level of control. During the inference of the model, it takes 6.5
seconds to stabilize the pendulum. The length of an entire episode is 25 seconds,
18.5 of which the pendulum is performing the control objective by staying at the
upright position with zero output angle. The results of the model inference can be
seen in Fig. 5b.

In this section, the basic functionality of the DRL platform was presented. The
tool allowed solving a simple pendulum environment through the Stable-Baselines3.
The provided solution is not very intrusive for external applications. It does not
require a user to spend time choosing the way of environment representation and
how it is supposed to be integrated with a trainer. By solving such a straightforward
environment using platform API, it was decided to switch towards a more complex
system, which became part of this paper’s “sim-to-real” use case, the INTECO
Inverted Pendulum.

33

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Training step #105

0

50

100

150

200

250

300

350

400

M
ea

n
ep

is
od

e
re

w
ar

d

(a) The resulting training trend of the sample pendulum use case. The training step is given hundred
of thousands. The mean episode reward indicates how statistically well the model was trained each
500 steps.

0 10 20 30 40 50 60 70 80 90 100

Time [s]

-4

-2

0

2

4

A
n

g
le

 [
ra

d
]

0 10 20 30 40 50 60 70 80 90 100

Time [s]

-6

-4

-2

0

2

4

6

8

A
n

g
u

la
r

v
e

lo
c
it
y
 [

ra
d

/s
]

X 6.5

Y 0.0353564

(b) The result of model inference during 4 episodes. The mark in Angle graph represents the settling
time for pendulum system. Throughout all episodes the angle was stabilized at 0 degrees, meaning
that the pendulum was in an upright position.

Figure 5. Results of solving the sample pendulum environment. The graph 5a demonstrates the
convergence of model to stable reward. The graph 5b shows how the converged model was able to
control the sample system during the series of episodes.

34

5. Experimental Setup with the DRL platform

In this section, we will describe the INTECO Inverted Pendulum system, outline its
mechanical design, and highlight the method of its control. Then, the conversion
to the platform’s compatible RL environment will be described, along with the
operation schema.

The Stable-Baselines3 was selected as the main training library for this use case.
Since it has shown promising results in a sample environment, no objective reasons
highlighted the need for change in a library.

The source code with prepared platform compatible environment is located in Github
under the project’s use cases [34].

5.1. Description of the inverted pendulum system

The inverted pendulum is a system that contains the poles attached to the movable
cart [35]. Its physical appearance is illustrated in Fig. 6. Four main components
constitute this system.

The first of them is the frame. The frame consists of a pair of metallic supports that
hold the rail. The rail is a long metallic bar on which the pendulum cart moves.
The rail length is approximately two meters, and it contains the physical barriers to
prevent the cart from hitting the system’s drivers/motors.

The second part is the cart itself. There are four bearings attached to its bottom to
make riding along the rail possible. Also, there is one optical encoder placed within
the cart box. This encoder allows to determine the pendulum pole angle and return
it as real-time feedback.

The third part is the driver, which controls the cart’s position through the driving
belt by applying the steering force at the end. The belt is moved by the direct
current motor installed at the rail’s end. The motor is being controlled through the
PWM driver connected to a computer. Also, one of the rail ends contains the second
optical encoder. This encoder allows transmitting the cart position feedback.

35

Figure 6. INTECO inverted pendulum system. Image source:
http://www.inteco.com.pl/products/pendulum-cart-control-system/pendulum/

The last part is the actual pendulum. It is mounted in the cart and looks similar to
the fork tower. As mentioned before, the optical encoder installed in a cart allows
for determining the pendulum’s angular position. The pole’s towers can only move
in a vertical plane, without any jitters in the horizontal direction.

Even though the pendulum contains all the necessary components for operation, it is
impossible to move it without computer control. The control against physical system
is performed programmatically through the Simulink. The manufacturer provided
the initial version of the Simulink’s model that includes the PWM driver necessary
for system’s movement. Also, the digital twin of the pendulum has been provided
by the INTECO. The virtual model contains the similar interfaces for providing
inputs and getting the observation outputs. The control is also performed within the
Simulink environment.

36

Figure 7. The schematic representation of pendulum system [1]. The pendulum rotates in a
vertical plane on the axis located in cart. The cart moves horizontally on a rail due to the applied
force parallel to the rail.

5.2. Mathematical model of the inverted pendulum system

The state of the system can be represented through the state vector [1] X =

[x1, x2, x3, x4], where x1is the cart position, x2 is the angle between the upward
direction and the pendulum, measured counterclockwise, x3 is the cart velocity, and
x4 is the pendulum angular velocity.

The control force F is applied to the cart in direction parallel to the rail, as illustrated
in Fig. 7. The force is being produced by PWM voltage signal u ∈ [−0.5, 0.5],so
that F = p1u+ p2x3,where p1 is the control signal to force ratio, and p2 is the cart
velocity to force ratio.

The state equations of the inverted pendulum’s mathematical model are identified as
follows:

37

ẋ1 = x3,

ẋ2 = x4

ẋ3 =
a1w1(x, u) + w2(x) cosx2

d(x)

ẋ4 =
w1(x, u) cosx2 + a2w2(x)

d(x)

(18)

where

w1(X, u) = k1u− x2
4 sinx2 − k2x3 (19)

w2(X) = g sinx2 − k3x4 (20)

d(x) = b− cos2 x2 (21)

a1 =
Jp
ml

, a2 =
1

l
, b = a1a2 =

Jp
ml2

(22)

k1 =
p1
ml

, k2 =
fc − p2
ml

, k3 =
fp
ml

(23)

The moment of inertia of pendulum related to the pendulum rotation axis is defined
as:

Jp =
1

12
mpwl

2
c +

1

4
mpwr

2
c +mpwl

2
co +

1

12
mpsl

2
p +

1

4
mpwr

2
p +mpsl

2
po (24)

The total moment of inertia related to the mass center of the system can be expressed
through Jp as:

38

J = Jp− l2 (mc +mp) (25)

where

l =
lpomps + lpwompw

mc +mps +mpw

(26)

All parameters in the equations above are described in Table 1. Some of the
parameters were configurable for the digital twin. These attributes are marked in a
corresponding column.

5.3. Control objective of the inverted pendulum system

The main control objective of the inverted pendulum system is to put the pendulum
in an upright position. Cart must be located close to the rail center as possible,
keeping the pendulum in the same angular pose. The quality of the controller depends
on how fast and reliable the cart upswings the pendulum.

The user has to apply the control in the pulse-width modulation (PWM) fraction
to move the cart along the rail. Depending on the sign of the PWM fraction, the
cart determines the direction of acceleration. Per outputs, the system provides the
pendulum pole angle via one encoder and the cart position on the rail via the second
encoder. The calculation of pole angular and cart velocities is performed within the
Simulink environment for virtual and physical environments.

Hence, given the possibility of obtaining these specific system outputs, it is clear to
state that the system’s control problem follows Markov’s property, which means that
the future state does not depend on the past. And as the problem follows Markov’s
property, the control objective can be converted to the RL problem [6].

Without deep-diving into Markov Decision Process (MDP) it is possible to describe
the scheme used to train the pendulum controller. Referring to Fig. 8, the general
system demonstrates how the DRL controller is taught and what it experiences per
a single step. The INTECO pendulum control problem can be described in this

39

Table 1. Parameters of the mathematical model of the inverted pendulum system.

Name Unit Description Value Is
configurable

m kg Equivalent mass of cart and pendu-
lum

0.6923 False

l m Distance from the axis of rotation to
the center of mass of system

0.0196 True

fc
Ns
m

Dynamic cart friction coefficient 0.5 True

fs N Static cart friction coefficient 1.1976 True

fp
Nms
rad

Rotational friction coefficient 27.344 ·
10−5

True

Jp kgm2 Moment of inertia of pendulum with
respect to axis of rotation

0.00292 False

g m
s2

Gravitational acceleration 9.81 True

mc kg Equivalent cart mass 0.5723 True

mps kg Pole mass 0.12 True

Rl m Rail length 1.8 False

lp m Length of pole 0.5 False

lpo m Distance between center of pole mass
and rotation axis

0.107 False

lc m Length of load 0.03 False

lpwo m Distance between center of load mass
and rotation axis

0.354 False

J kgm2 Total moment of inertia related to the
mass center

0.00386 True

40

Figure 8. The summarized interaction of Platform Environment with the training agent. The
controller sends the action to the INTECO Pendulum Platform Environment for each step. This
environment sends an action to an actual pendulum and returns the latest observation with a
calculated reward back to the training DRL controller.

specific sequence of points:

1. The training episode starts, and each episode has a fixed number of steps.
Once the episode finishes, it calculates the cumulative reward. The cumulative
reward indicates how successful is the current iteration of the controller.

2. Each step begins with the controller predicting the action based on some old
observation. The actions space is cropped continuous input between -0.5 and
0.5.

3. After the action has been applied to the system, we wait until a new observation
is generated. Once it is available, the Gym-compatible Environment calculates
the normalized reward. Normalized reward means that its range falls between
zero and one at each step. If the reward is equal to one, then the pendulum
system, after the applied action, is in ideal state.

4. Once the reward is calculated, the pendulum state is propagated back to the
controller trainer. Unless the specific outputs exceed the prohibited limits,
such as the cart rail limit of pole velocity limit, the system performs the same
action-reward-state transition sequence until the episode terminates. If limits
have been exceeded, the episode ends abruptly with a much lower score than
an average full-length episode.

The normalized reward function calculation was defined in the following way:

41

Rt =−
(∣∣∣αt

π

∣∣∣− 1
)
· (ωmax − |ωt|)

ωmax

· . . .

·
(
0.75 · (xmax − |xt|)

xmax

+ 0.25 · (υmax − |υt|)
υmax

) (27)

where α is the pole angle in radians, ω is the angular velocity in rad
s

, x is the cart
position in meters, and υ is the cart velocity in m

s
. The maximum values for velocities

and poses have been determined empirically and do not depend on the dynamics of
the actual pendulum. Specifically, in order not to damage equipment, limits were
selected as ωmax = 15, vmax = 3, and xmax = 0.7.

To sum up, the controller is being trained in favor of maximizing the cumulative nor-
malized step reward. Specifically, each state of the system will have an approximated
reward value if a specific action is taken. When the controller has been trained and
launched in inference mode, it selects such action that brings the biggest reward.
Since the controller is a detachable part of the reinforcement learning problem scheme,
it is certainly possible to share the designed controllers between physical and virtual
systems.

5.4. Creation of Platform Environment for the inverted pen-

dulum

Two main points must be fulfilled to prepare a Platform Environment for the controller
training. First is the injection of the Environment Server, which does not require
any preliminary design for our specific use case. Thus, the user can select the
particular address and ports for sending and receiving information with an external
application, start the server in runtime, and inject it using the class attributes into
the Platform Environment. Secondly, the OpenAI Gym step and reset methods have
to be implemented. The development of those methods is specific to the inverted
pendulum use case.

For the inverted pendulum use case, the implementation of the step method sends
a socket datagram with a new action. Then the same function expects to receive
the new observation from the Simulink as soon as the Environment Server receives
the next package after a sent action. We calculate the normalized reward for the

42

performed step based on the observed output. Nextly, before we return the reward
with the latest observation from the method, it is essential to check whether the
system went out of bounds for the expected observation space. If the pendulum
rotates too quickly or the cart exceeds the rail limits, the episode instantly terminates,
and the abrupt termination is penalized with a negative reward.

When designing the reset method, it was clear that it is impossible to make an actual
reset of the system using purely software API from the DRL platform. The main
reasons lie in the problem of not having full access to the dynamics of the system of
interest, so it might not always be possible to restore the system’s conditions for a
new episode programmatically. Due to that fact, the actual reset of the environment
has to be implemented in an external application itself. What the DRL platform
will do in its turn is it will always append the reset flag at each action sent to the
external application. Thus, as soon as the reset flag is experiencing a rising edge, the
external application can start the procedure of the system’s reset. And, if needed,
find a way to state to the DRL platform if the operation has been finished1.

To be compatible with the OpenAI Gym, the platform environment should also have
a specific number of steps and maximum reward per episode. Even though it is not
prohibited to omit this configuration, its lack usually causes the training to overfit.
For the DRL controller, it is essential to know the cumulative episode reward during
the assignment of neural network weights. In the inverted pendulum problem, the
maximum number of steps is 512. Since the reward per step is normalized, the total
reward2 per episode is also 512. Having the Platform Environment prepared, it is
possible to proceed with a description of operation schema within the Simulink. The
code for the Platform Environment, as well as action and observation spaces used
for the trainer, are given in Appendix B.

1Important feature for real-time physical systems, which can not guarantee an instant reset. In
case of the pendulum, the reset function looks at the latest state after the rising edge of the flag.
As soon as states indicate the total reset of the episode, the trainer proceeds with the training.

2Though it is practically not possible to achieve such a reward during the training because the
pendulum spends some timesteps for the swing up motion

43

(a) The Simulink control scheme for the digital twin of inverted pendulum

(b) The Simulink control scheme for the physical twin of inverted pendulum

Figure 9. The Simulink control schemes for digital/physical twins of the inverted pendulum. The
Figure 9a shows the layout for the digital twin, and the next Figure 9b shows the layout for the
interaction with a physical system.

5.5. Configuration of Simulink models for operation with the

DRL platform

According to the platform architecture, the Simulink should contain the implemen-
tation of data trespassers in the form of hub and hook. The application allows to
create the connection endpoints using the TCP/UDP communication, which was
also demonstrated in a section that solved the sample pendulum environment. The
control schemes for both virtual and physical INTECO pendulum systems are given
in Fig. 9.

44

Both models are driven through the Data hub that acts as the UDP server on which
the DRL platform sends the action and reset bit. The information from the hub is
propagated to the control loop that handles the twins driving and the twins episode
resets.

The main control loop drives the model and can reset the system to the initial
state during the episode termination. The reset of the virtual environment was
done through the rising edge of the reset bit and swing-down PID controller. This
controller brings the cart to the center point of the rail with poles pointing downwards.
Since the PID controller can not instantly reset the environment, the episode reset
usually takes time, especially at the beginning of the training generation, when the
model goes out of the observation space bounds too often.

In both virtual and physical use cases, the systems of interest have the same interface
with interaction. Specifically, both receive the PWM fraction under the same limits,
both of them output the observation in the form of the current pendulum’s state. The
only difference is that internally the digital twin contains the entire mathematical
implementation of the model, whilst the physical twin holds only the driver that
allows the user to speak with the PWM generator required to generate cart pulling
force.

There there was no need to make external visualization for the physical twin. However,
observation of the results for the digital twin needed some additional environment. It
is possible to visualize the pendulum through the Simulink. Still, to not implement
it from scratch, it was decided to take an existing virtual replica of the pendulum
in Unreal Engine. The virtual model in Unreal Engine demonstrates the system’s
outputs through the designed game object. This simulation was a part of the
Extended Reality project in TalTech’s Centre for Intelligent Systems [5], and it
helped a lot during the visual validation of the controller results.

Lastly, the observations for both physical/virtual twins are propagated to the DRL
platform through the Data hook. The Data hook also uses the UDP protocol to act
as a client connecting to the DRL platform Environment Server.

After the preparation of Platform Environment and the configuration of an external
application, we can finally start with the training of DRL controller experiment,
results of which are given in a next section.

45

6. Experimental Results with the DRL platform

6.1. Training section

The literature review has proven the applicability of gradient descent training al-
gorithms, such as DDPG, to robotics and control equipment applications. Though
the DDPG proves the possibility of designing optimal controllers, other gradient
descent-based training algorithms could do much better at controlling actual equip-
ment. One example of such an algorithm is the clipped PPO [22]. Developed by
the OpenAI team, it has inherited the benefits of trust-region policy optimization
(TRPO) methods, but with less heavy objective function implementation.

The main motivation of algorithm given in Eq. (7) is to take the minimum between
clipped and unclipped objectives clip (rt(θ), 1− ϵ, 1 + ϵ) Ât and rt(θ)Ât respectively.
This prevents the destructively large policy updates during the series of stochastic
gradient ascents. At the same time, the unclipped objective introduced in TRPO al-
lows making the sample efficient gradient ascent for the policy network update. Thus,
from a mathematical standpoint, the PPO is a reliable non-destructive algorithm
that can be used for achieving the inverted pendulum control objective.

To show that PPO benefits over other training algorithms, the abovementioned
paper brings empirical proof about algorithm’s performance against “vanilla” gra-
dient methods and generally the standard TRPO. As a result, the model training
performance was better in various MuJoCo environments, making the PPO a better
training algorithm for achieving the robust controller.

Considering these benefits, the models for the INTECO pendulum have been trained
using the PPO method. The hyperparameters for training have been left similar for
all environments (virtual, physical, “sim-to-real”).

The selection of hyperparameters has been based on the Stable-Baselines Zoo, the
repository which contains the collection of tuned models for the most popular OpenAI
Gym environments [36]. The InvertedPendulumSwingupBulletEnv-v0 OpenAI Gym
environment was selected for reference. The Table 2 describes the most critical
hyperparameters used during the training through Stable-Baselines3 API.

46

Table 2. The PPO hyperparameters used for INTECO training

Parameter Description Value

Stable-
Baselines3
argument
input3

Number of
steps

The number of steps for each Gym-
environment under training per model up-
date. Determines how many observations
should be taken before the gradient de-
scent.

2048 n_steps

Batch size

The size of the minibatch that is used dur-
ing the model update. This size determines
the amount of observation taken per de-
scent updates.

64 batch_size

Number of
epochs

Number of passes through the experience
buffer during the optimization towards the
decrement of a surrogate loss function.

20 n_epochs

Gamma
discount
factor

The discount factor shows how much the
model will underline the importance of
possible rewards in the future. The lower
it is, the more valuable are the immediate
rewards.

0.99 gamma

Lambda
factor for
GAE

The factor constructs the trade-off between
bias and variance for the GAE. Higher
lambda - higher is the bias estimator.

0.95 gae_lambda

Entropy
coefficient

The entropy coefficient is used for the value
loss function calculation. It prevents early
convergence of policy to a specific action
without proper exploration.

0.0 ent_coef

Clipping
range

The range that prevents the drastic param-
eters update during the stochastic gradient
ascent.

0.2 clip_range

Learning
rate

Corresponds to the strength of the gradient
descent update.

2.5 ·
10−4 learning_rate

Number of
hidden
layers

The number of hidden layers in both actor
and critic neural networks used during the
training

2 policy

Number of
neurons

The number of neurons in each hidden
layer of the neural networks during the
training

64

47

Besides the model hyperparameters, each training epoch has a fixed number of steps
it takes before the new generation starts. In the case of an inverted pendulum, there
were no limitations on the number of epochs. The model was trained until it was
visible that the control objective was fulfilled, and the training mean episode reward
is not increasing anymore. Each generation took 500000 steps. The trainer saved
the model every 5000 steps to analyze the model during the inference.

6.1.1. Training procedure for the virtual pendulum

The main goal was to implement a “sim-to-real” controller, so the controller design
for the virtual pendulum was done first.

Before the training starts, a user must launch the Simulink environment execution.
The pendulum is being executed through the Real-Time plugin to make it as close to
the natural environment possible. This plugin allows the model to run in a parallel
non-synchronous manner. Despite all of the dynamics and sample times fixed for the
digital twin block, the Real-Time execution allowed assigning the specific sample
times for the Data Input hub and Data Output hook. Different sample times brought
different behavior of the controller.

As the training proceeded, it was essential to look at the behavior of the various
sample times for the Data Input hub and Data Output hook. This parameter is
crucial as it allows to:

1. Increase/decrease the training time;

2. Share more dynamics the virtual pendulum holds.

Since the model’s training has been taking some time, only three different sample
times were taken into account. The result is shown in the Table 3, which contains
the information about the training with varying sample times. This test has been
conducted to find out the best sample time for the future controller.

Based on the results of the conducted experiment, it was clearly visible that for
the training against the virtual model, the best sample times were 0.03 and 0.01.

3The official API for the model training is described in Stable-Baselines3 documentation

48

Table 3. Results of the training per various sample time

Sample Time (seconds) Training time for 100K
steps (min)

Average episode reward
for 100K steps

0.01 38 94.87

0.03 87 157.6

0.05 133 108.6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Training step #105

0

50

100

150

200

250

300

350

400

450

M
ea

n
ep

is
od

e
re

w
ar

d

Figure 10. The controller’s training trend for a virtual twin of INTECO pendulum. An overall
tendency shows the sudden rise in mean episode reward. The controller has achieved a mean episode
reward of 400, which is suitable for the control objective, after 280 000 training steps.

However, the sample time of 0.03 seconds has been selected to train the virtual
pendulum. This decision has been based on the fact that high-frequency action input
during the training/inference on an actual pendulum could have damaged equipment
and created disturbances in the system due to the switching vibrations in the motor.

Overall, the training trend of the entire 500000 steps epoch for the model with a
sample time of 0.03 seconds can be seen in Fig. 10. Based on the visual inspection
of the training trend, it is possible to state that selected hyperparameters were able
to train the model of the INTECO virtual pendulum. First of all, the mean reward
of the model has been continuously increasing throughout the most considerable
portion of the training epoch. Secondly, the model was able to converge to the mean
reward per episode of 400, which allowed the controller to hold the pendulum in
upright position.

49

The time it took to train the whole epoch was 6 hours and 8 minutes. The mean
reward converged at step 280 000, which took 3 hours and 24 minutes. Because
it is possible to save the training checkpoints before the epoch termination, it is
not necessarily required to wait all 6 hours until the controller reaches the desired
reward.

To conclude, the success of the virtual model training has proven that the DRL
platform was able to generate a controller that can operate a complex nonlinear
nonphysical object in Simulink software. But the training of the virtual model
can not guarantee whether the platform can be used for the physical system or
“sim-to-real” use case. Thus, the next step to solve the “sim-to-real” problem was the
training in the real pendulum system.

6.1.2. Training procedure for the physical pendulum

Before starting with the training of the physical pendulum, one might be curious
why it is not possible to dive straightly into the “sim-to-real” use case. Why can’t
we use the best checkpoint from the virtual controller or try the training from the
same checkpoint? The answer - it has been tried, but during the model inference4

the controller was not achieving the objective totally, not even trying to swing up
the pendulum. These blockers are going to be described in a subsequent section, but
still, they gave an idea of what could have been wrong:

1. Using the DRL platform with the real pendulum might not be possible. Pri-
marily, the limitations could be related to long network delay, noise in the data,
and the inapplicability of software architecture in the design of the controllers
for such systems.

2. The dynamics of the virtual replica of the INTECO pendulum are completely
unaligned with the dynamics of the real system.

To prove that it is not an architecture blocker, it was decided to train the new
PPO controller with the same hyperparameters from scratch for the real pendulum.
Compared with the training of the virtual controller, training of the physical RL

4Even continuing the training from a checkpoint did not help. The controller was hitting the
physical barriers

50

model contained several problems related to new dynamics, which were not modeled
within the digital replica.

1. Sometimes, sensors output incorrect data with significant deviation from the
range. For instance, the pendulum encoder sent the negative value up to
thousands resulting in a substantial negative reward. Such huge negative
rewards were affecting the quality of the RL model negatively.

2. Cart observation space bounds used for the virtual model did not work for the
actual model because the cart was constantly hitting the physical barriers of
the rail due to the inertia. If the model’s training is happening on the real
equipment, it is vital to ensure that the procedure won’t damage the equipment.

The created Gym-compatible DRL platform environment contained the noise de-
tection that observes an instanteneous change of the observable states to mitigate
the first issue. If an absolute value of instantaneous change exceeds the observation
space limits, then the package with noisy outputs is discarded, and the platform
waits for the next one to arrive. The described solution helped increase the training
robustness and resolved the problem of sudden episode termination due to noisy
data.

Unfortunately, to solve the second problem, it was required to change the cart
position limit, after which the training episode terminates. The value has been
determined experimentally by observing whether the cart hits the physical barriers
during reset. As a final result, if the cart exceeds 70 cm from the rail center, the
episode terminates, and the environment reset happens. These sudden environment
terminations due to observation space limits also give the trainer a negative reward.
This way the controller understands that equipment must be operated within certain
boundaries.

Finally, it was possible to train the RL model on a real physical system after resolving
those issues. The pendulum controller with the highest mean episode reward has
shown the optimal control and robustness to disturbances. If one applies an external
force on the poles of the pendulum, the system immediately applies the counterforce
to keep the pendulum stable in an upright position. This behavior can be explained
by the excellent inheritance of the system’s dynamics. The result of the training can
be observed in a Fig. 11.

51

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Training step #105

0

50

100

150

200

250

300

350
M

ea
n

ep
is

od
e

re
w

ar
d

Figure 11. The controller’s training trend for a physical twin of INTECO pendulum. The mean
episode reward convergence is observed after 400 000 steps.

The sample time for the physical system was 0.03 seconds, as it was the best sample
time for the virtual model controller. An overall reward trend has been increasing
throughout the training generation. However, the terminal reward has not exceeded
the range above 400. The converged reward has only achieved the plateau of 340,
which was enough to perform the control objective, but the cart has been constantly
drifting near the rail center.

This behavior identifies that the dynamics of the virtual system are different from
the real system. The DRL controller on a physical pendulum takes more time to
inherit the system’s dynamics. The stable mean reward for the control was achieved
at 400 000 steps, which took 6 hours and 26 minutes.

In conclusion, it was possible to state that the DRL platform could train the
controller from scratch on a physical system. The speed of dynamics inheritance was
different from the virtual model. Still, it didn’t result in a complete failure of the
training because the trend of increasing mean episode reward was also continued
in the next epochs. Hence, the “sim-to-real” use case problem was not due to the
incompatibility of platform architecture or network delays. But it was pointed out
that the dynamics of the virtual model were significantly different from the physical
system. This problem had to be solved before using the virtual model controller on
actual equipment.

52

6.1.3. “Sim-to-real” training of the pendulum

Before proceeding with the “sim-to-real” use case, a pre-study was conducted on the
most recent trends in this domain. The article [12] conducted the study on the most
frequent methods that have been identified for solving “sim-to-real” problems. The
Table 4 highlights each approach with its application domain description.

• The Zero-shot Transfer approach was tested as soon as the virtual controller
was available. This test resulted in the wrong behavior of the pendulum.
The cart constantly hit the rail barriers, and the poles were rotating with an
unacceptable high angular velocity. Even the training from the checkpoint was
far worse than training from scratch because the cart was hitting the barriers
even with fixed observation space limits.

• The Domain Randomization, coupled with a correctly identified system, appears
to be a promising approach. However, it was not entirely clear how to change
the dynamics of the virtual system in Simulink runtime. To implement such a
technique, one has to figure out the possibilities of internal Matlab/Simulink
API.

• The Domain Adaptation seemed to not fit in a current use-case, as it was
primarily used for vision-based problems. Also, it is not entirely clear how to
get the observation data from two systems in parallel during the training. The
main goal of the “sim-to-real” INTECO use case is to use as less training time on
a physical pendulum as possible. If such an approach requires a simultaneous
execution, it is better to train the controller from scratch.

• Learning with Disturbances could have helped if the virtual model’s dynamics
were relatively close to the existing system. As the previous section has proven,
the inference problem was most likely coming from the totally unaligned
dynamics of virtual and physical models.

• The selection of different simulation environments is not a choice, as the
problem lies in implementing the Simulink model subsystem, not the Simulink
environment itself. This approach is much more suitable for complex robotics
use cases, where the simulation environment like Gazebo and MuJoCo contain
the implementation of the entire digital twin in their codebase.

53

Table 4. List of “sim-to-real” methods for DRL

Method Description

Zero-shot
Transfer

A straightforward approach where the trained controller is
applied directly to the physical environment. The success of
this approach depends on the virtual’s model accuracy.

System
Identification

This method aims to identify the precise mathematical model
of the real system on which the controller has to be trained.
Though it is possible to approximate the virtual environment for
simple systems, identifying the precise model can become a big
problem for complex equipment that has varying dependency
of its dynamic on external conditions, such as temperature,
humidity, etc.

Domain
Randomization

This approach considers the limitation of the precision of the
virtual models. Instead of adapting the model and trying to
tune it for the best fitting parameters, it should be possible to
change the model dynamics during the training dynamically.
The solution has a powerful effect on sim-to-real experiences for
robotics and other complex environments.

Domain
Adaptation

The main goal of this method is to utilize the data from two
sources of the environment: physical and virtual. This approach
tries to unify the virtual and real observation spaces with almost
identical reward functions and action spaces. For instance, one
method can calculate the statistical difference between two
domains and apply the difference depending on the environment.
This approach is mainly conducted in vision-based RL problems.

Learning with
Disturbances

The algorithm applies perturbations in a simulated environment
to make the controller more robust in natural settings. The
approach has found use in a multi-agent training environment,
where multiple perturbations can be applied simultaneously
during the one training generation.

Simulation
Environment

The critical aspect of good transfer learning is an accurate exe-
cution environment with precise mathematical derivations. This
approach can serve well for complex popular systems that have
been transferred in simulation environments such as Gazebo,
PyBullet or MuJoCo.

54

• The last approach that seemed the most suitable appeared to be System
Identification. All of the other methods, in some sense, rely on the quality of
the digital replica. However, if it is completely unaligned, these methods can
not guarantee the training’s success. If one could optimize the virtual model
parameters to be relatively close to the physical system, then the training time
on the physical system can be significantly reduced. It is possible to select
a good checkpoint of the virtual controller and launch the training on the
pendulum. As a result, it might be possible to observe faster convergence to
the expected reward slice.

Thus, taking the points above into account, the “sim-to-real” use case used the
Systems Identification method.

To understand the problem’s root cause during zero-shot learning, it was necessary
to find a common reference point from which it is possible to analyze the difference.
As the controller for the physical system was trained, it was possible to get the
data from the actual pendulum by running several data-collecting episodes. Since
the interface of interactions between two Simulink models for physical and virtual
systems were identical, it was possible to apply the same controller on the virtual
model to take a look at observation differences. Fig. 12 compares two environments
at all observation states.

0 50 100 150 200 250 300 350 400 450 500
Time [s]

-0.5

0

0.5

1

Ca
rt

 p
os

iti
on

 [
m

]

0 50 100 150 200 250 300 350 400 450 500
Time [s]

-2

-1

0

1

2

3

Ca
rt

 v
el

oc
ity

 [
m

/s
]

0 50 100 150 200 250 300 350 400 450 500
Time [s]

-2

-1

0

1

2

Po
le

 a
ng

le
 [

ra
d]

0 50 100 150 200 250 300 350 400 450 500
Time [s]

-15

-10

-5

0

5

10

Po
le

 a
ng

ul
ar

 v
el

oc
ity

 [
ra

d/
s]

Digital twin
Physical twin

Digital twin
Physical twin

Digital twin
Physical twin

Digital twin
Physical twin

Figure 12. The observations from digital and physical twins under the same action input. The
observations include cart position and its velocity, pole angle and its angular velocity. The results
show the fundamental misalignment in dynamics between two systems.

55

Based on the graph, there are multiple problems indicating the significant dynamics
difference in the virtual model.

• Both cart velocity and pose have a phase shift of 180 degrees compared to the
existing system. It likely happened due to an inversion of action input in the
PWM generator. However, this phase shift has not been compensated in a
model for some reason.

• Outputs related to pole have a specific time delay, while generally, the value
trend matches. This problem likely lies in incorrect inertia dynamics, which
caused such delay.

• It is not seen, but in the beginning, the cart velocity has a higher rate of change
than the actual model. It seems that the amplification of the input signal is
wrong and should be optimized for the virtual model.

It was necessary to modify the model’s internal structure to fix the phase shift.
There was no direct way of inverting the phase without breaking the mathematical
derivations used to calculate all other state variables besides cart pose and velocity.
Eventually, it was decided to reverse the output’s cart pose and velocity sign.
The phase shift was not removed, but it was not a problem due to the symmetrical
dynamics relative to the zero rail position. This approach did not break mathematical
derivations, and it has also allowed having an output with an aligned phase.

To deal with other issues, it was necessary to properly excite the system using an
input signal with varying frequencies. This approach is called open-loop identification
of the system’s dynamics. Through Simulink, it was possible to generate a Sine
input signal with varying frequency for 100000 steps. The varying frequency signal
allowed to explore the observation space for the actual pendulum and the virtual
model simultaneously. Examined observations data had been saved in Matlab code
for future analysis.

Once the data from all environments were available and aligned with a single
timeframe, it was possible to calculate the root-mean-square error (RMSE) for
both cart and pole positions. Of course, no direct input would help minimize the
RMSE in favor of making the model closer to reality. However, the digital replica
provided by INTECO has 12 configurable parameters. Suppose one can create a
script that iteratively changes the configurable parameters. In that case, it is possible

56

to calculate the new value of RMSE once the simulation runs again with an updated
set of parameters. Thus, the optimization problem for the digital twin of inverted
pendulum can be described as follows:

min RMSE(X) (28)

where Xis the vector of configurable model parameters from the Table 1. In addition
to 9 configurable parameters from mentioned table, the digital twin allows to control
three additional variables, namely input force, cart velocity and pole velocity dead
zones. The dead zones parameters allow to emulate the behavior of the real hardware,
where in some signal ranges for input force, cart and pole velocities the system does
not change its state. The RMSE equation from Eq. (28) is defined through the next
equation:

RMSE(X) =0.75 ·

√∑N
t=0 (pphysicalt − pvirtualt(X))2

N
+ . . .

0.25·

√∑N
t=0 (sin(α)physicalt − sin(α)virtualt(X))2

N
+ . . .

+

√∑N
t=0 (cos(α)physicalt − cos(α)virtualt(X))2

N

(29)

where N is the total number of time steps during the optimization iteration, p is the
cart position, and α is the pole angle.

After the Nelder-Mead optimization epoch, the new set of parameters for the virtual
model has been identified. The values of these updated parameters are given in Table
5. The model’s optimization algorithm reduced the RMSE from 2.18 to 0.475 for the
open loop identified data. The behavior of the optimized digital twin is illustrated
in Fig. 13. The code for model optimization in Matlab is provided in Appendix B.

To solve the “sim-to-real” problem, it was required to train the controller on the
updated digital model of the pendulum and test its inference on the real device. The

57

0 10 20 30 40 50 60
Time [s]

0

1

2

3

4

5

Ca
rt

 p
os

e
[m

]

0 10 20 30 40 50 60
Time [s]

-4

-3

-2

-1

0

1

2

3

4

Pe
nd

ul
um

 a
ng

le
 [

ra
d]

Digital twin
Physical twin

Digital twin
Physical twin

(a) Difference in dynamics between the unoptimized digital twin of pendulum and its physical twin.

0 10 20 30 40 50 60
Time [s]

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Ca
rt

 p
os

e
[m

]

0 10 20 30 40 50 60
Time [s]

-4

-3

-2

-1

0

1

2

3

4

Pe
nd

ul
um

 a
ng

le
 [

ra
d]

Digital twin
Physical twin

Digital twin
Physical twin

(b) Difference in dynamics between the optimized digital twin of pendulum and its physical twin.

Figure 13. Results of the optimization of the digital twin of the pendulum. Both digital and
physical twins were provided the single input in form of sinusoidal signal of varying frequency.
To have identical dynamics, the trend for both physical and digital twins should coincide. The
graph 13a shows how the behavior of unoptimized model has been different from actual pendulum.
The graph 13b illustrates how dynamics became closer to the physical twin after the Nelder-Mead
optimization.

58

Table 5. Virtual model configurable parameters

Parameter Unoptimized
value

Optimized value

Mass of cart [kg] 0.5723 0.572066

Mass of pendulum [kg] 0.12 0.119648

Rotational friction coefficient [Nms
rad

] 27.344 · 10−5 27.6 · 10−5

Static cart friction coefficient [N] 1.1975875 1.199442

Dynamic cart friction coefficient [Ns
m

] 0.5 0.502926

Distance from axis of rotation to the
center of mass [m]

0.01955717 0.019631

Moment of inertia related to mass centre
[kg ·m2]

0.0038583 0.003861

Gravity acceleration [m
s2

] 9.81 9.826466

Control signal to force ratio [N] 12.86 6.338787

Input force dead zone [N] 0.093125 0.227417

Cart velocity dead zone [m
s
] 0.1 0.099952

Pole velocity dead zone [rad
s

] 1.5 1.495618

training trend for a new generation of the controller is given in Fig. 14a. By the 250
000 steps, a mean reward for the digital controller was 415, making it work ideally
in a virtual environment and a good checkpoint to try an application on the real
equipment.

After loading the mentioned checkpoint, the inference of the model on the actual
system was better than the first zero-shot attempt. The cart was trying to swing
up the pole, it was not exceeding the rail limits, but the rotational dynamics were
not optimised very well. The pendulum was constantly rotating, trying to find a
stabilization point. Actually, during some inference trials, the controller from a
checkpoint could make a swing-up movement and hold the pendulum in the required
position for a short period. It indicates a significant improvement in the virtual
model accuracy, which could be used to gain a training advantage for the actual
pendulum. Thus, instead of starting the controller training for the physical system
from scratch, it was decided to start it from the abovementioned checkpoint. The
training trend for such an approach is shown in Fig. 14b.

If one compares Fig. 11 with the newest one, it can be observed that the old controller

59

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Training step #105

0

50

100

150

200

250

300

350

400

450

M
ea

n
ep

is
od

e
re

w
ar

d

(a) Training trend of a new virtual controller against new model parameters. The required reward
was achieved in 250 000 steps.

0 0.5 1 1.5 2 2.5
Training step #105

200

250

300

350

400

450

M
ea

n
ep

is
od

e
re

w
ar

d

(b) Training trend for a real controller started from virtual controller’s checkpoint. The mean
episode reward has converged after 130 000 steps with a result that allowed to control a physical
twin.

Figure 14. Trends of training of the controllers in “sim-to-real” use case. In 14a the controller
is being trained on the optimized version of digital twin. In 14b we start the training from a
checkpoint of the controller from the virtual model.

60

was not even able to reach such a level of mean reward in a span of the whole epoch.

The new trend has the following characteristics:

• First of all, it starts with already a very high reward. What has been observed
during the start is that the controller, if the swing-up motion begins from the
right side of the rail, was able to hold poles in an upright position. However, if
the swing-up movement starts from the left side of the rail, it cannot stabilize
it at all. This behavior created an impression that either rotational dynamics
depended on rotation direction or the virtual controller had an overfit towards
inaccurate dynamics.

• Secondly, the training trend shows a drastic quality drop in the first 15 000
steps. It most likely occurs due to the weights update of the overfitted neurons
in neural network hidden layers.

• Thirdly, the rate of change of the reward suddenly boosts after 15 000 steps.
It is achieving the stable episode reward of 400 in 1 hour. The trend in Fig.
11 did not reach such a good reward mean episode even in 7 hours of training.
This behavior most likely shows time-dependent adaptability issues hidden
within physical pendulum dynamics. Otherwise, the physical controller would
obtain the mean reward of close to 400 in the first 250 000 steps, like in a
virtual model trend, but it didn’t happen.

Since the mean episode reward converged after 130 000 steps and did not experience
any increasing trends in a span of 1 hour and 30 minutes, the training was finished
before the epoch termination. It was possible to create a robust RL controller that
took advantage of “sim-to-real” knowledge transfer. In 1 hour and 54 minutes, the
new version of the controller converged to the mean reward above 400 hundred, that
resulted in a very robust controller being able to hold the INTECO pendulum in an
upright position.

6.2. Comparison of the controllers

The Table 6 is provided to explain the behavior of the DRL controller at different
slices of mean episode reward. This data has been identified by observing the behavior

61

of digital and physical twin controllers over the series of inference episodes. The
description in the table fits both types of the inverted pendulum.

Three controllers have been designed as the result of the experiment that connected
the DRL platform with the INTECO Inverted Pendulum system. The first controller
is purely operational in the virtual environment. The second controller was trained
from scratch on the physical twin of the pendulum. It did not manage to achieve the
best mean average rewards but still performed the control with a drifting cart. After
transferring the knowledge from the optimized virtual environment to a physical
environment, the last controller appeared. The DRL model was trained from a
specific checkpoint that allowed to reduce the training time on the equipment by a
significant period. The overview of all controllers is given in Table 7 with a short
description regarding their inference behavior.

Based on the results of this table, three controllers were designed to control the
INTECO inverted pendulum. To control the virtual model of the pendulum provided
by INTECO, one could use the DRL controller for the digital twin. When speaking
about the control of the actual pendulum, it is possible to use the controller trained
on a pendulum from scratch or the controller produced by solving the “sim-to-real”
problem. The last option has the best quality that was achieved in the shortest time,
making it the best DRL controller obtained during the experiment.

The main problem with controllers for the physical twin is adaptability. Controllers
can not guarantee the same behavior during the inference after the long time break.
This can be caused by the encoders reset, system dynamics changes, or training
overfit during some hardware issues. For instance, the cart can start constantly
moving in either direction without an explicit action input.

In the end, the DRL platform allowed to train controllers for digital and physical
twins of the INTECO Inverted Pendulum. Also, with the help of system identification
and optimization of the digital replica’s dynamics, it was possible to successfully
build the controller for the physical twin that utilized the gained experience from a
virtual model checkpoint.

62

Table 6. The behavior of RL model at different reward slices

Reward slice Description

<50 The model stochastically moves on the rail. Usually, the system
goes out of bounds and generates a negative reward. An episode
usually terminates at this moment, and the cart moves to the center
through a swing-down PID regulator.

50-100 The controller understands that it needs to keep the cart to the
center of the rail and have the pendulum in an upright position
for the maximum reward output. However, the cart still moves
chaotically on a rail but usually does not go out of bounds. It is
possible to observe the rotation of the poles on a rotational axis.

100-190 The controller rotates the pendulum with a car located near the
center of the rail. The angular velocity of the rotation is decreased
compared to the previous slice, but holding the pendulum in an
upright position is still a problem.

190-300 The model understands that the biggest reward is obtained once
the pendulum is located at an upright position with zero angular
velocity. The cart is moving to hold the pendulum in the required
angular pose for a short period. During this slice, the controller
overfits towards instantaneous rewards from the pole. It is not
necessarily trying to hold an upright position in the rail center.

300-400 The controller starts fulfilling the control criterion. It can hold the
pole in an upright position. The biggest drawback at this stage is
the behavior of the cart. The pendulum is stabilized, but the cart
still drifts on the rail. Sometimes it can swing up the pole near
the center of the rail, and sometimes, the pendulum is stabilized
somewhere near the system’s boundaries. Overall, the reward is
high, and the pole never falls down, especially when reaching an
approximate 380 average reward. However, the cart behavior needs
to be optimized.

>400 If this slice is observed consecutively, it indicates that the training
can be finished. After this mean episode reward, the controller can
hold the pendulum upright in proximity to the rail center. Cart, in
this case, does not experience sudden drifts in speed/position and
performs a very stable and robust control of the movement once the
pole has been swang up.

63

Table 7. Comparison of the controllers trained during the experiment. The results include the
mean reward which was achieved at a specific step during the training. As well, training time to
achieve that step is given.

Controller Step Mean
re-
ward

Training
time

Description

The DRL
controller for
digital twin

280 000 400 3 hours
and 24
minutes

This generation of controller has shown
good trait at dynamic inference. The main
problem of such controller is that it was
trained on inaccurate digital twin. Thus,
it is possible to use the DRL model only
in virtual environment, inference of this
controller in real environment can damage
the equipment.

The DRL
controller for
physical twin,
trained from
scratch

400 000 340 6 hours
and 26
minutes

The DRL controller for physical twin
trained from scratch did not show an ex-
cellent reward convergence at high values.
The long training time indicates the adapt-
ability problem for the physical environ-
ment.

The DRL
controller for
physical twin
trained from
knowledge
transfer

130 000 423 1 hour
and 54
minutes

Training time has only took into account
the training on an actual pendulum. The
training time of the checkpoint was ne-
glected because in “sim-to-real” problem
it is a costless source of information. The
controller itself shows the best training re-
sult in the shortest span of time. During
the inference, the control of the pendulum
was robust, meaning that cart was able to
hold the poles in an upright position even
during the application of external distur-
bances on the system.

64

7. Discussion

This section underlines the main points which could be concluded from the provided
research, starting from the benefits/solved issue and finishing with the remaining
problems and what could have been done better.

7.1. Main benefits

Out of all goals that have been achieved during the research, the listed below are
bringing the most value:

1. Creation of the DRL platform in the form of a Python package. Any user can
access it via the internet, refer to the Github wiki, and create a bridge for
various applications, would it be Unreal Engine, Simulink, LabVIEW, Unity,
or other software. The implementation of the platform environment, based on
OpenAI gym, allows the platform to be used with multiple libraries for the
DRL training.

2. The DRL platform helped create the controller that was able to pass knowledge
from the digital environment to the actual system. The way the platform
architecture provided an interface of interaction with both virtual and physical
systems allowed to replace various controller versions and experiment with
training algorithm hyperparameters relying purely on existing popular libraries,
not some custom training loops.

3. While dealing with a “sim-to-real” use case, it was possible to optimize the
digital replica of the INTECO pendulum to the next level of accuracy, which
allowed the transfer learning to happen.

4. Even without considering “sim-to-real”, it was possible to create a robust RL
controller on a real physical system using only several lines of code for the
training loop.

The most significant advantage is the reduction of training time for the physical
controller by almost seven times compared to the controller trained from scratch.

65

Moreover, to design such a controller, no knowledge of the internal dynamics of
the systems was required. And to additionally point out, the hyperparameters for
training were not benchmarked and optimized, meaning that training time overall
can be reduced. Any reduction in non-profitable machine utilization reduces the
total cost of equipment. As it is a discussion section, let’s introduce some imagined
example to outline certain benefits of using the DRL platform with “sim-to-real”
expertise.

7.2. Main problems

Besides the achievements, the research has encountered particular problems which
are still not mitigated. Possibly, some points from the following subsection could
have resolved some of the issues, but there is no explicit guarantee.

1. The controller for the physical pendulum has an adaptation problem. There is
no guarantee that the freshly tuned controller will operate robustly after the
day of operation, especially if the encoders are being reset.

2. The software design of the DRL platform remains simple and could be en-
hanced with an advanced integration applied to specific applications or training
libraries.

3. The optimization of the INTECO virtual pendulum was not ideal. Though the
cart dynamics seemed to have excellent accuracy, the rotational dynamics of
the pole were not possible to configure through the Nelder-Mead algorithm.
There are not enough parameters in digital replica to compensate for those
dynamics.

4. Hyperparameters of the PPO training algorithm have been selected based on
some custom benchmark pendulum environment. Tuning these parameters was
not performed, so the training time is still relatively high.

These outlined problems could hide some other issues in addition. The biggest
problems could be considered for the next iteration of the research related to “sim-
to-real” transfer learning and the DRL platform.

66

7.3. Possible future steps

It is already possible to state what could have been tried out to achieve better account
at each domain: for DRL platform, controller adaptability, training optimization,
etc.

1. System Identification as a transfer learning method allowed to optimize the
dynamics of virtual model. However, one can try to introduce the Domain
Randomization method, which helps to change the internal dynamics of the
digital replica of the pendulum during the training. This way the controller
could also inherit the dynamics that cause the adaptation issue.

2. The Stable-Baselines3 Zoo or other methods for hyperparameter tuning could
be used. Hyperparameter tuning can significantly decrease the training time
for all three pendulum training use-cases: virtual, physical, and “sim-to-real”.

3. There are other INTECO devices having their respective digital replicas pro-
vided by the manufacturer. The DRL platform can be applied to INTECO
3D Crane, INTECO Magnetic Levitation system, and other devices that could
improve the overall quality of the DRL platform.

4. Creation of Input/Output Data hubs/hooks is done manually within the
external application. It might be possible to design a script for deploying the
needed components to the software automatically, making no need for the user
to even take care of the platform configuration in an external environment. Of
course, this solution would imply that automation scripts will be biased to the
specific application.

5. Multi-agent environments had not been tested in the platform. Though ar-
chitecture does not provide any problems for it, the trial of such an approach
might increase the platform’s user experience if some design points could have
been done better.

Overall, taking the subsections above into account, the research provided a lot of
specific benefits that could be utilized in future works or even used by other people.
The number of particular problems and determined action points indicates a steady
direction for improvement, which could bring the DRL platform to a higher level
within the research domain.

67

8. Conclusions

The following research has proven that it is possible to design a deep reinforcement
learning controller that can operate the real pendulum by partially inheriting the
dynamics from its digital twin. With the help of the deep reinforcement learning
platform, it was possible to create controllers for three different use-cases:

• Training the digital inverted pendulum system - creating the PPO controller
that can operate the digital twin of an inverted pendulum. It took 3 hours and
24 minutes to achieve the model with very good quality.

• Training of the physical inverted pendulum system from scratch - creating the
PPO controller that can operate the real equipment in a laboratory environment
robustly. It took 6 hours and 26 minutes to achieve the model with good quality.

• Training of the physical inverted pendulum using “sim-to-real” learning - creat-
ing the PPO controller that could inherit some knowledge of virtual dynamics
at inference for the actual pendulum. It has only taken 1 hour and 54 minutes
to achieve higher quality than the two models above.

The System Identification method was used to transfer the virtual training experience
to a real pendulum and solve the “sim-to-real” challenge during the controller design.
Based on the quality increase of the last abovementioned controller, the approach has
been successful. However, problems with rotational dynamics and system adaptation
remain.

These issues could be resolved by Domain Randomization and PPO hyperparameters
tuning, which were not considered in this research. Besides creating the “sim-to-real”
controller, the accuracy of the INTECO digital replica allows it to be used for other
research related to the identification of systems or control of the equipment.

The deep reinforcement learning platform can be downloaded as a Python package.
Ease of interface for interaction enables users to focus more time on the research
subject and not on the custom implementation of integration scripts or training
algorithms compatible with Unreal Engine, Simulink, Unity, LabVIEW, or other
applications.

68

To sum up, the conducted research provided a controller that was preliminary taught
in the virtual version of the inverted pendulum. In addition, the solution to the
“sim-to-real” problem gave a bridge for the comfortable use of popular training
libraries with a variety of control objects running outside of the main training loop.
Besides the “sim-to-real” use case for the INTECO inverted pendulum system, it is
possible to proceed with other control equipment, such as the INTECO 3D crane or
the INTECO magnetic levitation system.

69

References

[1] Inteco, “Pendulum-cart system: User’s manual,” a-lab.ee, Feb. 2013. [Online].
Available: https://a-lab.ee/man/Pendulum-user-manual.pdf

[2] P. Leitao, F. Pires, S. Karnouskos, and A. W. Colombo, “Quo vadis industry
4.0? position, trends, and challenges,” IEEE Open Journal of the Industrial
Electronics Society, vol. 1, pp. 298–310, 2020.

[3] F. Lamnabhi-Lagarrigue, A. Annaswamy, S. Engell, A. Isaksson, P. Khargonekar,
R. M. Murray, H. Nijmeijer, T. Samad, D. Tilbury, and P. V. den Hof, “Systems
& control for the future of humanity, research agenda: Current and future roles,
impact and grand challenges,” Annual Reviews in Control, vol. 43, pp. 1–64,
2017.

[4] D. T. Consortium, “Definition of a digital twin,” digitaltwinconsortium.org,
May 2022. [Online]. Available: https://www.digitaltwinconsortium.org/initiati
ves/the-definition-of-a-digital-twin.htm

[5] S. Jersov and A. Tepljakov, “Digital twins in extended reality for control system
applications,” in 2020 43rd International Conference on Telecommunications
and Signal Processing (TSP). IEEE, jul 2020.

[6] Y. Li, “Deep reinforcement learning,” 2018. [Online]. Available: https:
//arxiv.org/abs/1810.06339

[7] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,
D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with
deep neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489,
jan 2016.

[8] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau,
“An introduction to deep reinforcement learning,” Foundations and Trends® in
Machine Learning, vol. 11, no. 3-4, pp. 219–354, 2018.

[9] H. Moradi, M. T. Masouleh, and B. Moshiri, “Robots learn visual pouring task
using deep reinforcement learning with minimal human effort,” in 2021 9th RSI
International Conference on Robotics and Mechatronics (ICRoM). IEEE, nov
2021.

70

https://a-lab.ee/man/Pendulum-user-manual.pdf
https://www.digitaltwinconsortium.org/initiatives/the-definition-of-a-digital-twin.htm
https://www.digitaltwinconsortium.org/initiatives/the-definition-of-a-digital-twin.htm
https://arxiv.org/abs/1810.06339
https://arxiv.org/abs/1810.06339

[10] K. Zhu and T. Zhang, “Deep reinforcement learning based mobile robot naviga-
tion: A review,” Tsinghua Science and Technology, vol. 26, no. 5, pp. 674–691,
oct 2021.

[11] N. Mellatshahi, S. Mozaffari, M. Saif, and S. Alirezaee, “Inverted pendulum con-
trol with a robotic arm using deep reinforcement learning,” in 2021 International
Symposium on Signals, Circuits and Systems (ISSCS). IEEE, jul 2021.

[12] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in deep
reinforcement learning for robotics: a survey,” in 2020 IEEE Symposium Series
on Computational Intelligence (SSCI). IEEE, dec 2020.

[13] M. Sisin, “The drl python package,” PyPi, Apr. 2022. [Online]. Available:
https://pypi.org/project/drl-platform/0.1/

[14] L. Buşoniu, T. de Bruin, D. Tolić, J. Kober, and I. Palunko, “Reinforcement
learning for control: Performance, stability, and deep approximators,” Annual
Reviews in Control, vol. 46, pp. 8–28, 2018.

[15] P. Ramanathan, K. K. Mangla, and S. Satpathy, “Smart controller for conical
tank system using reinforcement learning algorithm,” Measurement, vol. 116,
pp. 422–428, feb 2018.

[16] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv.org,
Sep. 2015.

[17] H. Iwasaki and A. Okuyama, “Development of a reference signal self-organizing
control system based on deep reinforcement learning,” in 2021 IEEE Interna-
tional Conference on Mechatronics (ICM). IEEE, mar 2021.

[18] M. Saeed, M. Nagdi, B. Rosman, and H. H. S. M. Ali, “Deep reinforcement
learning for robotic hand manipulation,” in 2020 International Conference on
Computer, Control, Electrical, and Electronics Engineering (ICCCEEE). IEEE,
feb 2021.

[19] J. Woo, C. Yu, and N. Kim, “Deep reinforcement learning-based controller for
path following of an unmanned surface vehicle,” Ocean Engineering, vol. 183,
pp. 155–166, jul 2019.

[20] G. C. Lopes, M. Ferreira, A. da Silva Simoes, and E. L. Colombini, “Intelligent
control of a quadrotor with proximal policy optimization reinforcement learning,”

71

https://pypi.org/project/drl-platform/0.1/

in 2018 Latin American Robotic Symposium, 2018 Brazilian Symposium on
Robotics (SBR) and 2018 Workshop on Robotics in Education (WRE). IEEE,
nov 2018.

[21] P. Carvalho, “Solving openai gym environments with matlab rl toolbox,”
medium.com, Apr. 2020. [Online]. Available: https://medium.com/analytics-vid
hya/solving-openai-gym-environments-with-matlab-rl-toolbox-fb9d9e06b593

[22] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017. [Online]. Available:
https://arxiv.org/abs/1707.06347

[23] J. A. Nelder and R. Mead, “A simplex method for function minimization,”
Comput. J., vol. 7, pp. 308–313, 1965.

[24] R. M. Lewis, V. Torczon, and M. W. Trosset, “Direct search methods: then and
now,” Journal of Computational and Applied Mathematics, vol. 124, no. 1-2, pp.
191–207, dec 2000.

[25] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence
properties of the nelder–mead simplex method in low dimensions,” SIAM Journal
on Optimization, vol. 9, no. 1, pp. 112–147, jan 1998.

[26] UniversalRobots, “Offline simulator - e-series - ur sim for non linux
5.9.4,” universal-robots.com, Dec. 2021. [Online]. Available: https:
//www.universal-robots.com/download/software-e-series/simulator-non-linux
/offline-simulator-e-series-ur-sim-for-non-linux-594/

[27] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, “Openai gym,” 2016.

[28] OpenAI, “Getting started with openai gym,” gym.openai.com, 2022. [Online].
Available: https://gym.openai.com/docs/

[29] M. F. Argerich, “List of reinforcement learning environments,” Medium.com,
Apr. 2019. [Online]. Available: https://medium.com/@mauriciofadelargerich/re
inforcement-learning-environments-cff767bc241f

[30] M. Sisin, “Deep reinforcement learning platform,” github.com, Apr. 2022.
[Online]. Available: https://github.com/Senerader/DeepReinforcementLearning
Platform

72

https://medium.com/analytics-vidhya/solving-openai-gym-environments-with-matlab-rl-toolbox-fb9d9e06b593
https://medium.com/analytics-vidhya/solving-openai-gym-environments-with-matlab-rl-toolbox-fb9d9e06b593
https://arxiv.org/abs/1707.06347
https://www.universal-robots.com/download/software-e-series/simulator-non-linux/offline-simulator-e-series-ur-sim-for-non-linux-594/
https://www.universal-robots.com/download/software-e-series/simulator-non-linux/offline-simulator-e-series-ur-sim-for-non-linux-594/
https://www.universal-robots.com/download/software-e-series/simulator-non-linux/offline-simulator-e-series-ur-sim-for-non-linux-594/
https://gym.openai.com/docs/
https://medium.com/@mauriciofadelargerich/reinforcement-learning-environments-cff767bc241f
https://medium.com/@mauriciofadelargerich/reinforcement-learning-environments-cff767bc241f
https://github.com/Senerader/DeepReinforcementLearningPlatform
https://github.com/Senerader/DeepReinforcementLearningPlatform

[31] V. Lyashenko and P. Januszewski, “The best tools for reinforcement learning in
python you actually want to try,” Neptune.ai, Nov. 2021. [Online]. Available:
https://neptune.ai/blog/the-best-tools-for-reinforcement-learning-in-python

[32] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann,
“Stable-baselines3: Reliable reinforcement learning implementations,” Journal of
Machine Learning Research, vol. 22, no. 268, pp. 1–8, 2021. [Online]. Available:
http://jmlr.org/papers/v22/20-1364.html

[33] I. The MathWorks, “Train ddpg agent to swing up and balance pendulum,”
mathworks.com. [Online]. Available: https://www.mathworks.com/help/reinfor
cement-learning/ug/train-ddpg-agent-to-swing-up-and-balance-pendulum.ht
ml

[34] M. Sisin, “Master’s thesis source code and templates,” github.com, Apr. 2022.
[Online]. Available: https://github.com/Senerader/TalTechMasters2022

[35] INTECO, “Pendulum and cart control system,” inteco.com.pl. [Online].
Available: http://www.inteco.com.pl/products/pendulum-cart-control-system/

[36] A. Raffin, “Rl baselines3 zoo,” https://github.com/DLR-RM/rl-baselines3-zoo,
2020.

73

https://neptune.ai/blog/the-best-tools-for-reinforcement-learning-in-python
http://jmlr.org/papers/v22/20-1364.html
https://www.mathworks.com/help/reinforcement-learning/ug/train-ddpg-agent-to-swing-up-and-balance-pendulum.html
https://www.mathworks.com/help/reinforcement-learning/ug/train-ddpg-agent-to-swing-up-and-balance-pendulum.html
https://www.mathworks.com/help/reinforcement-learning/ug/train-ddpg-agent-to-swing-up-and-balance-pendulum.html
https://github.com/Senerader/TalTechMasters2022
http://www.inteco.com.pl/products/pendulum-cart-control-system/
https://github.com/DLR-RM/rl-baselines3-zoo

A. Non-exclusive license

I Mark Sisin

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for
my thesis "Practical Implementation of “Sim-to-Real” Deep Reinforcement
Learning Control for Inverted Pendulum System" , supervised by Saleh Ragheb
Saleh Alsaleh

(a) to be reproduced for the purposes of preservation and electronic publication
of the graduation thesis, incl. to be entered in the digital collection of
the library of Tallinn University of Technology until expiry of the term of
copyright;

(b) to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the
nonexclusive licence

3. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection
Act or rights arising from other legislation.

74

B. Software interfaces and classes

Interface for creation of Gym-compatible platform environment:

class PlatformEnvironment(gym.Env):

def __init__(self) −> None:

super(PlatformEnvironment, self).__init__()

self._env_server: Optional[AbstractServer] = None

def reset(self):

raise NotImplementedError("Reset method should be implented

specifically for each Gym environment")

def step(self, _):

raise NotImplementedError("Step method should be implented

specifically for each Gym environment")

@property

def env_server(self) −> AbstractServer:

"""

Interface for getting the environment server in Gym environment

"""

assert self._env_server, "Environment server should be injected in

runtime"

return self._env_server

@env_server.setter

def env_server(self, server: AbstractServer):

"""

Interface for setting the environment server in Gym environment at

runtime

"""

self._env_server = server

The Platform Environment implementation for the sample pendulum use case:

class SampleCartpole(PlatformEnvironment):

"""

Custom Simulink env with non−realtime execution

75

"""

def __init__(self):

super(SampleCartpole, self).__init__()

self._logger = logging.getLogger(__name__)

sin_max = 1

cos_max = 1

velocity_max = np.finfo(np.float32).max

high = np.array(

[

sin_max,

cos_max,

velocity_max

],

dtype=np.float32,

)

self.observation_space = Box(−high, high, dtype=np.float32) #type:

ignore

self.action_space = Discrete(3)

self.angle_threshold = 12 * 2 * math.pi / 360

self.vel_threshold = 10

def reset(self):

self.done = False

self._logger.warning("ENV RESET")

self.env_server.send_payload([0, 1],">dd")

payload = self.env_server.receive_payload(">ddd")

sin, cos, vel = \

payload[0], payload[1], payload[2]

return np.asarray([sin, cos, vel])

def step(self, action):

assert action in [0, 1, 2], action

if action == 0:

force = −2
elif action == 1:

force = 0

elif action == 2:

force = 2

else:

raise ValueError(f"Unknown action {action}")

76

self.env_server.send_payload([force, 0], ">dd")

payload = self.env_server.receive_payload(">ddd")

sin, cos, vel = \

payload[0], payload[1], payload[2]

angle = atan2(sin, cos)

self._logger.info(f"Angle: {angle}")

self.done = bool(

vel < −self.vel_threshold
or vel > self.vel_threshold

)

Full range reward structure (normalized)

self.reward = −1 * (abs(angle/math.pi) −1)
self._logger.info(f"Reward: {self.reward}")

return np.array([sin, cos, vel], dtype=np.float32), self.reward,

self.done, {}

if __name__ == "__main__":

try:

from stable_baselines3.ppo.ppo import PPO #type: ignore

from stable_baselines3.common.callbacks import CheckpointCallback #

type: ignore

except:

print("To execute, this code must have Stable−Baselines3 installed")

exit()

env_server = UdpServer(

"127.0.0.1",

16385,

"127.0.0.1",

16384

)

env_server.start_server()

gym.envs.register(

id='SampleCartpole−v0',
entry_point='sample_cartpole:SampleCartpole',

max_episode_steps=500,

reward_threshold=500,

)

env = gym.make('SampleCartpole−v0') #type: ignore

env.env.env_server = env_server #type:ignore

77

model = PPO('MlpPolicy', #type: ignore

env,

verbose=1,

tensorboard_log=f"Logs/SamplePole/PPO",

device="cpu"

)

try:

checkpoint_callback = CheckpointCallback(save_freq=5000, save_path=f

'Models/SamplePole/PPO') #type: ignore

model.learn(total_timesteps=500_000, callback = checkpoint_callback,

tb_log_name=f"PPO")

finally:

env_server.close_server()

The Platform Environment implementation for the INTECO Inverted Pendulum use
case:

import logging

from typing import Optional

import gym

import math

import numpy as np

import time

from gym import spaces

from DrlPlatform import PlatformEnvironment

class InvertedPendulumRT(PlatformEnvironment):

"""Custom class that represents the Pendulum environment

Limits were taken based on INTECO documentation of Fuzzy controller

Observation:

Type: Box(5)

Num Observation Min Max

0 Cart Position −5 5

1 Cart Velocity −inf inf

2 Sine of Angle −1 1

3 Cosine of Angle −1 1

4 Pole Angular Velocity −inf inf

Actions:

Type: Box(1)

Num Action Min Max

78

0 PWM −0.5 0.5

"""

def __init__ (self):

super(InvertedPendulumRT, self).__init__()

self._logger = logging.getLogger(__name__)

self.cart_pos_max = 1

self.cart_vel_max = np.finfo(np.float32).max

self.pole_sine_max = 1

self.pole_cosine_max = 1

self.pole_angular_vel_max = np.finfo(np.float32).max

high = np.array(

[

self.cart_pos_max,

self.cart_vel_max,

self.pole_sine_max,

self.pole_cosine_max,

self.pole_angular_vel_max

],

dtype=np.float32,

)

self.observation_space = spaces.Box(−high, high, dtype=np.float32) #

type: ignore

self.action_space = spaces.Box(

low=−0.5, high=0.5, shape=(1,), dtype=np.float32

)

self.total_reward = 0.0

self.done = False

self.cart_vel_threshold = 3

self.pole_vel_threshold = 15

self.cart_pos_threshold = 0.7

Historical data

self.previous_cart_pose = None

self.previous_cart_velocity = None

self.previous_pend_pose = None

self.previous_pend_vel = None

self.previous_action = None

def _receive_payload(self):

Returns cart_pose, cart_vel, pend_

79

payload = self.env_server.receive_payload(">dddd")

formatted_payload = self.format_payload(payload)

cart_pose, cart_vel, pendulum_pose, pendulum_vel = \

formatted_payload[0], formatted_payload[1], formatted_payload

[2], formatted_payload[3]

if not (self.previous_cart_pose and self.previous_cart_velocity \

and self.previous_pend_pose and self.previous_pend_vel):

self.previous_cart_pose = cart_pose

self.previous_cart_velocity = cart_vel

self.previous_pend_pose = pendulum_pose

self.previous_pend_vel = pendulum_vel

else:

Noise detection

while True:

if abs(self.previous_cart_pose − cart_pose) > self.

cart_pos_threshold or \

abs(self.previous_pend_vel − pendulum_vel) > self.

pole_vel_threshold or \

abs(self.previous_cart_velocity − cart_vel) > self.

cart_vel_threshold:

self._logger.warning("Detected noise")

payload = self.env_server.receive_payload(">dddd")

formatted_payload = self.format_payload(payload)

cart_pose, cart_vel, pendulum_pose, pendulum_vel = \

formatted_payload[0], formatted_payload[1],

formatted_payload[2], formatted_payload[3]

continue

else:

break

self.previous_cart_pose = cart_pose

self.previous_cart_velocity = cart_vel

self.previous_pend_pose = pendulum_pose

self.previous_pend_vel = pendulum_vel

return cart_pose, cart_vel, pendulum_pose, pendulum_vel

def step(self, action):

Negative reward for a step

info = {}

Sending action through env server

80

self.previous_action = action

self.env_server.send_payload(

payload=[action, 0],

sending_mask=">dd"

)

time.sleep(0.031)

cart_pose, cart_vel, pendulum_pose, pendulum_vel = \

self._receive_payload()

pendulum_sine = math.sin(pendulum_pose)

pendulum_cosine = math.cos(pendulum_pose)

self._logger.info(f"Pendulum pose: {pendulum_pose}\nPendulum vel: {

pendulum_vel}\nCart pose: {cart_pose}\nCart vel: {cart_vel}")

Cart reward calculation

if not self.done:

self.done = bool(

pendulum_vel < −self.pole_vel_threshold
or pendulum_vel > self.pole_vel_threshold

)

if self.done:

self.reward = −30
if not self.done:

self.done = bool(

cart_vel < −self.cart_vel_threshold
or cart_vel > self.cart_vel_threshold

)

if self.done:

self.reward = −30
if not self.done:

self.done = bool(

cart_pose < −self.cart_pos_threshold
or cart_pose > self.cart_pos_threshold

)

if self.done:

self.reward = −50
self.reward = −((((pendulum_pose + np.pi) % (2 * np.pi)) − np.pi)

** 2 \

+ 0.1 * pendulum_vel ** 2 + 0.01 * (cart_vel ** 2))

self.reward = self._pendulum_pose_reward(pendulum_pose) * \

self._pendulum_velocity_reward(pendulum_vel) * \

(self._cart_pose_reward(cart_pose) + \

81

self._cart_velocity_reward(cart_vel))

self.total_reward += self.reward

formatted_payload = np.array([cart_pose, cart_vel, pendulum_sine,

pendulum_cosine, pendulum_vel], dtype=np.float32)

Return the result

self._logger.info(f"Reward: {self.reward}")

return formatted_payload, self.reward, self.done, info

def _pendulum_pose_reward(self, angle: float):

return 1 at top pose

return −1 * (abs(angle/math.pi) −1)

def _pendulum_velocity_reward(self, velocity: float):

return 1 at zero velocity

return (self.pole_vel_threshold − abs(velocity))/self.

pole_vel_threshold

def _cart_pose_reward(self, pose: float):

return 1 at zero pose

return (self.cart_pos_max − abs(pose))/self.cart_pos_max * 0.75

def _cart_velocity_reward(self, velocity):

return 1 at zero velocity

return (self.cart_vel_threshold − abs(velocity))/self.

cart_vel_threshold * 0.25

def reset(self) −> np.ndarray:

self.counter = 0

self.total_reward = 0

self.done = False

self.previous_cart_pose = None

self.previous_cart_velocity = None

self.previous_pend_pose = None

self.previous_pend_vel = None

self._logger.warning("ENV RESET")

if not self.previous_action:

self.previous_action = 0

self.env_server.send_payload([−self.previous_action, 1],

sending_mask=">dd")

82

self.previous_action = None

time.sleep(0.031)

payload = self.env_server.receive_payload(">dddd")

formatted_payload = self.format_payload(payload)

while not self._is_env_reset(formatted_payload):

self.env_server.send_payload([0, 1],

sending_mask=">dd")

time.sleep(0.031)

payload = self.env_server.receive_payload(">dddd")

formatted_payload = self.format_payload(payload)

self._logger.warning("ENV RESET DONE")

cart_pose, cart_vel, pendulum_pose, pendulum_vel = \

formatted_payload[0], formatted_payload[1], formatted_payload

[2], formatted_payload[3]

self._logger.info(f"Pendulum pose: {pendulum_pose}\nPendulum vel: {

pendulum_vel}\nCart pose: {cart_pose}\nCart vel: {cart_vel}")

pendulum_sine = math.sin(pendulum_pose)

pendulum_cosine = math.cos(pendulum_pose)

formatted_payload = np.array([cart_pose, cart_vel, pendulum_sine,

pendulum_cosine, pendulum_vel], dtype=np.float32)

return formatted_payload

def format_payload(self, payload) −> np.ndarray:

"""

Formatting payload which is going to be sent to training agent

"""

formatted_payload = np.array(payload, dtype=np.float32)

Array poses:

1. Pendulum position

2. Pendulum velocity

3. Cart position

4. Cart velocity

pendulum_pose, pendulum_velocity, cart_pose, cart_velocity = \

formatted_payload[0], formatted_payload[1], formatted_payload

[2], formatted_payload[3]

return np.array([cart_pose, cart_velocity, pendulum_pose,

pendulum_velocity], dtype=np.float32)

def _is_env_reset(self, formatted_payload) −> bool:

"""

83

Check if env has been reset

"""

cart_pose, cart_velocity, pendulum_pose, pendulum_velocity = \

formatted_payload[0], formatted_payload[1], formatted_payload

[2], formatted_payload[3]

counter = 0

is_reset = True

while counter <= 5:

is_reset = is_reset * (abs(pendulum_pose) > 2.9) \

and (abs(pendulum_velocity) < 1) \

and ((abs(cart_velocity) < 0.2)) \

and (abs(cart_pose) < 0.1)

counter += 1

return is_reset

MATLAB snippets for pendulum model optimization

% Anonymous function handler

optimizer_pend=@(x) function_optimizer_pendulum_all(x(1));

% Option to optimize

options = optimset('PlotFcns',@optimplotfval);

% mc, mp, fp, FS, FC, I, J, g, M, DZu, DZcv, DZcp

x0 = [

0.5723

0.12

0.00027344

1.1975875

0.5

0.019557

0.003858

9.81

7.0

0.093125

0.1

1.5]; % Initial solution

% mc, mp, fp, FS, FC, I, J, g, M, DZu, DZcv, DZcp

lb = [

0

0

84

0

0

0

0

0

0

0

0

0

0];

% mc, mp, fp, FS, FC, I, J, g, M, DZu, DZcv, DZcp

ub = [

1

1

0.01

2

1.5

0.1

0.01

15

13

2

1

3];

options = optimset('Display','iter', 'TolX',1e−7);
x = fminsearchbnd(@function_optimizer_pendulum_all, x0, lb, ub, options)

The RMSE calculation function in MATLAB:

function [rmse] = function_optimizer_pendulum_all(x)

mc = x(1);

mp = x(2);

fp = x(3);

FS = x(4);

FC = x(5);

I = x(6);

J = x(7);

g = x(8);

M = x(9);

DZu = x(10);

85

DZcv = x(11);

DZcp = x(12);

simopt=simset('solver','ode5','SrcWorkspace','base', 'FixedStep', 0.01);

load('OLTestData');

set_param('pidvirtual/Dynamics', 'm', sprintf('[%f, %f]', mc, mp), ...

'fr', sprintf('[%f, %f, %f]', fp, FS,

FC), ...

'P4', sprintf('[%f, %f, %f]', I, J, g),

...

'Up', sprintf('[%f, %f]', M, DZu), ...

'DZ', sprintf('[%f, %f]', DZcv, DZcp));

sim('IntecoVirtualOptimisation.slx',[0 120],simopt);

StatesMatrix = new_states;

optimized_sin = sin(StatesOptimization.Data(2:12001, 1));

physical_sin = sin(StatesMatrix(2:12001, 2));

optimized_cos = cos(StatesOptimization.Data(2:12001, 1));

physical_cos = cos(StatesMatrix(2:12001, 2));

optimized_cart = StatesOptimization.Data(2:12001, 3);

physical_cart = StatesMatrix(2:12001, 4);

rmse = 0.75*sqrt(sum((optimized_cart − physical_cart).^2)/ 12000) + ...

0.25*(sqrt(sum((optimized_sin − physical_sin).^2)/ 12000) + ...

sqrt(sum((optimized_cos − physical_cos).^2)/ 12000));

clear StatesOptimization;

end

86

	Introduction
	Problem statement
	Contribution
	Thesis outline

	Prior work
	Application of deep reinforcement learning in the control applications
	Deep reinforcement learning in the domain of transfer learning

	Methodology
	Reinforcement learning preliminaries
	Value function
	Generalized Advantage Estimate
	Deep reinforcement learning
	Proximal Policy Optimization

	System Identification preliminaries
	Open-Loop Identification preliminaries
	Optimization preliminaries

	The proposed deep reinforcement learning platform
	Implementation architecture
	Training sample controller for use case from external application

	Experimental Setup with the DRL platform
	Description of the inverted pendulum system
	Mathematical model of the inverted pendulum system
	Control objective of the inverted pendulum system
	Creation of Platform Environment for the inverted pendulum
	Configuration of Simulink models for operation with the DRL platform

	Experimental Results with the DRL platform
	Training section
	Training procedure for the virtual pendulum
	Training procedure for the physical pendulum
	“Sim-to-real” training of the pendulum

	Comparison of the controllers

	Discussion
	Main benefits
	Main problems
	Possible future steps

	Conclusions
	References
	Non-exclusive license
	Software interfaces and classes

