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Abstract

Implementation of fractional order PID controller tuning methods based

on control system frequency response.

Functions with fractional order (FO) diffintegrals do not have general analytical solutions in

time domain and precise numerical methods are expensive. Control system tuning methods are

iterative and especially in case of FO the function value computations can be time consuming.

Time domain based numerical methods for calculating step and impulse response can have a

static error while the frequency domain method is claimed to be exact. This thesis analyzes

step response in frequency domain using Fourier series of a low frequency square wave (FSM)

method for fractional order PID controller tuning. The thesis has found that the method is

promising, but sensitive to optimized function and frequency range choice and in case of un-

stable functions does not always give precise results. Some methods are created to improve the

precision.
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Kokkuvõte

Murrulist järku PID regulaatori häälestamismeetodite realiseerimine au-

tomaatjuhtimissüsteemi sageduskarakteristiku põhjal.

Murrulist järku diffintegraalidega funktsioonidel ei ole üldistatud analüütilist lahendit ning väär-

tuste arvutamiseks kasutatakse numbrilisi meetodeid, mis on arvutuslikult mahukad. Automaat-

juhtimissüsteemide häälestamine on iteratiivne, mis eriti murrulist järku funktisoonide väärtuste

arvutamise korral on ajaliselt mahukas. Hüppekaja ja impulsskaja arvutusmeetodid võivad aja

domeenil põhinevate numbrilise analüüsi korral sisaldada staatilist viga. Väidetavalt on sage-

dusvallas samad tulemused täpsed. Antud bakalaureuse töö analüüsib murrulist järku PID kont-

rolleri häälestamise meetodit, kus kasutatakse sagedusvallas madalsagedusliku nelinurksignaa-

li Fourieri rea meetodil (FSM) arvutatud hüppekaja. Bakalaureuse töös leitakse, et nimetatud

meetod on paljulubav, kuid tundlik nii optimeeritava funktsiooni ja sagedusriba valiku suhtes ja

mittestabiilsete funktsioonide puhul ei anna alati täpseid tulemusi. Töö käigus tuuakse mõned

meetodid mis parandavad täpsust stabiilsete funktsioonide korral.
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Chapter 1

Introduction

1.1 Goals of the work

Fractional-order (FO) calculus is an extention to conventional calculus that can be used for

modeling some extraordinary dynamic systems, from magnetic levitation control systems to

theoretical physics. In practice FO function values are calculated with numerical aproximation.

Control system controller tuning for FO systems requires a lot of computations and is time con-

suming [1]. Fractional-order proportional-integral-derivative (FOPID) controller optimization

takes on 2010 year desktop computer about 10 minutes and it can’t be done in feasible time

on current ARM computers as they are aproximately 20 times slower. This work is to find a

better way to optimize FO controllers by using step and impulse response with frequency re-

sponse method. FO controller optimization requires that methods described in this thesis are

sufficiently precise and within a reasonable computational complexity. The goal for thesis is to

validate the numerical method suitability for FOPID tuning.

1.2 Objectives and Contributions

Fourier series of a low frequency square wave (FSM) method with time delay [2] was found to

be too complex for the task and a more simple method is chosen without time delay [3]. FSM

method is claimed to be exact [3]. FOMCON is an existing Matlab toolbox for FO control

systems [1] created in TTU. The algorithms for step FSM, impulse FSM and impulse Inverse
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Fourier transform (IFTM) methods are implemented in Matlab with θ(n) complexity as a pos-

sible extension to FOMCON toolbox. The result is validated on three systems with fractional

order transfer function against FOMCON results. It was found that the FSM method needs

dynamic frequency range as one static range cannot be used within reasonable computational

complexity. A simple method in this thesis named W3dB is implemented in Matlab based

on [3]. Then a simple control system optimization is implemented that results in new functions

that can not be calculated with the frequency results. The results are analyzed and a couple of

methods for impoved step FSM method frequency range are implemented, the last methods be-

ing computationally expensive. Controller tuning method with FOPID controller output limits

is implemented so that it reuses the frequency model calculations and is Matlab parallel pro-

cessing compatible. The results are not conclusive and suggestions on additional research are

given.

1.3 Thesis Outline

In Chapter 2 the reader is presented with mathematical background.

In Chapter 3 the FSM method is validated with simulations and algorithm improvements are

made.

In Chapter 4 the FSM method is used to tune FOPID controllers for closed closed feedback

systems.
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Chapter 2

Theoretical Part

2.1 Fractional calculus

Fractional order calculus is an generalization to differential and integrate operators. The integro-

differential operator is defined as [4]

aD
α
t =



dα

dtα
R(α) > 0,

1 R(α) = 0,∫ t

a
(dt)−α R(α) < 0,

(2.1)

where α ∈ R, but α could be a complex number. The fractional-order differentiation is exactly

the same with integer-order one, when α ∈ N .

The well-established fractional-order definitions [5] include the Cauchy definition, the Grünwald-

Letnikov definition, the Riemann-Liouville definition and the Caputo definition. These defini-

tions contain some controvery. This thesis and FOMCON toolbox is using Grünwald-Letnikov

definition, Caputos definition is given as an example.

Definition (Grünvald-Letnikov)

aD
α
t f(t) = lim

h→0

1

hα

[(t−a)/h]∑
j=0

(−1)j
(
α

j

)
f(t− jh),

Definition (Caputo)
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0D
α
t f(t) =

1

Γ (m− α)

∫ t

0

f (m)f(τ)

(t− τ)α−m+1
dτ,

where m− 1 < α < m,m ∈ N.

The fractional-order differentiation has the following properties [5]:

1. The fractional-order differentiation 0D
α
t f(t), with respect to t of an analytic function f(t),

is also analytical.

2. The fractional-order differentiation es exactly the same with integer-order one, when α ∈

N . Also 0D
0
t f(t) = f(t).

3. The fractional-order differentiation is linear,

0D
α
t [af(t) + bg(t)] = a ·0 Dα

t f(t) + b ·0 Dα
t g(t).

4. The fractional-order differentiation is commutative and also

0D
α
t [0D

β
t f(t)] = 0D

β
t [0D

α
t f(t)] = 0D

α+β
t f(t).

5. The Laplace transform is defined as

L[0Dα
t f(t)] = sαL[f(t)]−

n−1∑
k=1

sk[0D
α−k−1
t f(t)]t=0

and if the derivatives of the function f(t) are all equal to 0 at t = 0, then

L[0Dα
t f(t)] = sαL[f(t)].

The properties can be used to substitute fractional order integration by integration and fractional-

order differentiation, this is used by [2] to avoid steady-state error by substituting 1
s0.8

= s0.2

s
.
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2.2 FO transfer function

A fractional-order control system with input u(t) and output y(t) can be described in form [3,6]

anD
αny(t)+an−1D

αn−1y(t)+. . .+a0D
α0y(t) = bmD

βmu(t)+bm−1D
βm−1u(t)+. . .+b0D

β0u(t).

or by fractional order transfer function (FOTF) in the form

G(s) =
Y (s)

U(s)
=

bms
βm + bm−1s

βm−1 + . . .+ b0s
0

ansαn + an−1sαn−1 + . . .+ a0sα0
.

2.3 Step and impulse response

Heaviside step function H(x) is defined as [7]

H(x) =


0, x < 0

(1
2
, x = 0)

1, x > 0

Impulse response is described by delta function δ, it can be viewed [7] as a derivative of Heavi-

side step function d
dx
[H(x)] = δ(d).

From a practical viewpoint, Heaviside step function and impulse response are used as an input

to test the behavior of unknown systems, be it an electronic component or industrial system.

2.4 Fourier series and Fourier transform

Fourier series of a fuction f(x)is given by

f(x) =
1

2
a0 +

∞∑
n=1

ancos(nx) +
∞∑
n=1

bnsin(nx),

where

a0 =
1

π

∫ π

−π

f(x)dx,
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an =
1

π

∫ π

−π

f(x)cos(nx)dx,

bn =
1

π

∫ π

−π

f(x)sin(nx)dx,

and n = 1, 2, . . ..

The Fourier transform is a generalization of the complex Fourier series, [8]

F (k) = Fx[f(x)](k) =

∫ ∞

−∞
f(x)e−2πikxdk

and the inverse Fourier transform is

f(x) = F−1
k [F (k)](x) =

∫ ∞

−∞
F (k)e2πikxdk.

2.5 Fourier series of a low frequency square wave (FSM)

Square wave with period T when t < T/2 can be viewed as an approximation to step function

H(t). The formula for the square wave of -1 to 1 with frequency ws = 2π/T is 2[H( x
T/2

) −

H( x
T/2

− 1)]− 1 and the Fourier series is [9]

x(t) =
4

π

∞∑
k=1(2)

1

k
sin(kωst),

where T is the period of the square wave. If the output passes through transfer function G(s)

then the output [3] is

ystep(t) =
4

π

∞∑
k=1(2)

(
1

k
Re[G(jkωs)] sin(kωst) +

1

k
Im[G(jkωs)] cos(kωst))

≈ 4

π

∞∑
k=1(2)

1

k
Re[G(jkωs)] sin(kωst). (2.2)

Since d
dx
[H(x)] = δ(d) we can write
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yimpulse(t) =
d

dx
ystep(t)

=
4

π

∞∑
k=1(2)

(ωsRe[G(jkωs)] cos(kωst)− ωsIm[G(jkωs)] sin(kωst))

≈ 4

π

∞∑
k=1(2)

ωsRe[G(jkωs)] cos(kωst). (2.3)

It should be noted that H(t) grows from 0 to 1, but xstep(t) is part of a wave from -1 to 1. The

practical part is comparing the results of these functions to numerical method impemented in

FOMCON toolbox.

2.6 Inverse Fourier transform (IFTM)

Transfer function for impulse response g(t) exist only for t > 0, but the range of Fourier

transform is from −∞ to ∞. It is possible to extend the function to t < 0 by making the

extended function g(t) by defining even function g(t) = g(−t) or by defining odd function

g(t) = −g(−t). The resulting function [3]in even case is

gimpulse(t) =
1

2π

∫ ∞

−∞
2ReG(jω)ejωtdω =

2

π

∫ ∞

0

ReG(jω)cos(ωt)dω

and in odd case is

gimpulse(t) =
1

2π

∫ ∞

−∞
2jImG(jω)ejωtdω = − 2

π

∫ ∞

0

ImG(jω)sin(ωt)dω.
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Chapter 3

FSM step response method

We are using the following available FO transfer function examples from FOMCON toolbox

G1(s) =
1

14994s1.31 + 6009.5s0.97 + 1.69
, (3.1)

G2(s) =
1

0.8s2.2 + 0.5s0.9 + 1
, (3.2)

G3(s) =
−2s0.63 + 4

2s3.501 + 3.8s2.42 + 2.6s1.798 + 2.5s1.31 + 1.5
. (3.3)

The goal is to optimize three FOPID controllers for controlling systems described by the transfer

functions G1(s), G2(s), G3(s). All three transfer functions have difficult frequency responses.

Functions G4(s), G5(s) and G6(s) were found during controller optimization.

G4(s) =
0.8s2.7 + 0.5s1.4 + s0.5

0.8s2.7 + 0.5s1.4 + s+ 2s0.5 + 1
, (3.4)

G5(s) =
0.8s2.2682 + 0.5s0.9682 + s0.0682

0.8s2.2682 + 1.223e− 06s1.0672 + 0.5s0.9682 + s0.0682 + 1.1466 · 10−8
, (3.5)

G6(s) =
0.062073s1.6843 + 0.076995s0.99112 + 10.702

0.8s3.1911 + 0.5s1.8911 + 0.062073s1.6843 + 1.077s0.99112 + 10.702
. (3.6)

Function G1(s) has a very low significant frequency as shown in Figure 3.1a.

Function G2(s) has a peak at close to 1 rad/s and with maximum amplitude of 13dB as shown

in Figure 3.1b.
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Function G3(s) is complex as shown in Figure 3.1c.

Function G4(s) has very low response at 0 frequency, has a narrow peak and continues at 0dB

or value 1 towards infinity as illustrated in Figure 3.1d.

Function G5(s) is similar to Heaviside step function H(t) and the frequency response is shown

in Figure 3.5.

System with transfer function G6(s) is unstable, it is found during FOPID optimization.

3.1 Step FSM method with static frequency range

3.1.1 Time step size with FOMCON method

To validate step FSM method (2.2) the results must be compared against some other method

because FO calculus has no analytical solution. FOMCON step function does less aproxima-

tions than FSM method and is better suitable as our correct function. The simulation results

for system described with a transfer function of G2 (3.2) is in Figure 3.2. In the simulation the

step FSM method is using cutoff frequency of 2.789 rad/s and the frequency range is divided to

10001 parts. During simulation the difference between 200 time steps FSM and 4000 time steps

FSM was minimal. FOMCON step had more dependency on step size, for 1000 time steps the

results with FSM were comparable and with 4000 steps the results were practically equal.

The result is that for some functions FSM method can give excellent results and for results

validation FOMCON step method must be used with at least 4000 time steps. FSM method was

slower, it took 0.77s to compute compared with FOMCON 0.31s. Calculating 200 steps with

FSM was 0.08s. Controller tuning can use less points and for few time steps the FSM method

can be more efficient.

3.1.2 Static frequency range

Systems described with transfer functions G1(s) (3.1) and G3(s) (3.3) have different significant

frequency ranges as can be seen in Figure 3.1a and Figure 3.1c. An experiment was made with

two different and good fitting frequency ranges, for G1(s) with range from 0 to 0.0004 and

G3(s) with frequency range from 0 to 7.4. The results are visualized in Figure 3.3 and Figure

14
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show that one frequency range is in practice not usable for all FO systems. The wrong frequency

range for the system resulted in both cases a result that is similar to constant function zero.
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3.2 Static frequency range for impulse FSM and impulse IFTM

methods

3.3 Dynamic frequency range for step FSM

3.3.1 W3dB method

The 3dB method is described in [3] with the method ws = 0.01w3dB, where w3dB is the first 3

dB point on G(jw) below G(0), which is assumed to be finite. The frequency range is [0 : ws :

100∗w3dB] and it contains 10001 points. W3dB method gives good results for simple functions

but fails on G4(s) (3.4) because the value of G(j ∗ 0) = 0.

3.3.2 Unbalanced search

Unbalanced frequency search method searches for last point x in logarithmic scale from 10−5to

105where the difference between G(j ∗ 105) and G(j ∗ x) is larger than 10−2 ∗max(G()). The

constant 105 is the maximum frequency in search range and 10−2 as precision is 1/
√
(10001)

where 10001 is average step count. This method gives a good frequency range for G4(s) (3.4)

but cannot be used to find frequency range for G5(s) (3.5). From theoretical aspect it does not

take into account that the step FSM method 2.2 summand contains 1/k and the value for high

frequency is reduced.
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Figure 3.5: Time diagram of a system described by transfer function G5(s) for long time period.

3.3.3 Balanced search

Unbalanced search method is improved by using the exact summand from 2.2 by replacing G()

with 1/k · G() · sin(k · t) where time t=1. Here the weight 1/k reduces the high frequency

summands and sin(k · t) reduces the low frequency summands. This method can be used to

find usable frequency range for system described with transfer function G5(s) (3.5).

3.4 FSM step method implementation considerations

3.4.1 Effect of time on frequency range

The FSM method (2.2) is based on square wave with frequency ws = 2π/T and described

by Heaviside step functions as 2[H( x
T/2

) − H( x
T/2

− 1)] − 1. To test the time and frequency

dependency function G5(s) evaluated with FSM step method, this shows the foundation of FSM

method in Figure 3.5. FSM method gives comparable result to Heaviside step function in time

range where the lowest frequency ws < π/T where T is maximum time, this is first half the

square wave period.

3.4.2 Function oscillations

Function oscillations can create problems for setting limits on FOPID optimizations and oscil-

lating functions need more time steps for optimization weight calculations. In experiment G5(s)

oscillations compared to FOMCON method were up to 20% as illustrated in Figure 3.6. FSM
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Figure 3.6: Time diagram of a system described by transfer function G5(s).

method for FOPID optimization is not the best fit if the overshoot must be controlled exactly

and the results must be verified with other methods.

3.4.3 Unstable transfer function

Function G6(s) (3.6) describes a system feedback(FOPID*G2,1) and is by FOMCON

method isstable() unstable, that looks like a very good FOPID for controlling object G2(s)

with FSM step method as shown in Figure: 3.7. The systems step response gains expected re-

sult 1 fast and is precise, this is how FSM method based FOPID optimization sees the result.

The system does not have visible changes if the frequency range and step amount are signifi-

cantly increased, the used frequency range [0 : 3.9409/30001 : 3.9409] looks like a good fit.

The system response is significantly different when viewed with FOMCON implementation, as

illustrated in Figure: 3.8. The system is for the first 15s close to value 4, then jumps to 0.5 ·1010

and falls to −3 · 1010. The real world FOPID controller will work on time model and hence the

FOMCON model must be considered the practical and correct result. Theoretical methods for

correct answer are not available. Unstable systems are sensitive to initial conditions or as in this

case, to calculating methods.

3.5 Non-linear frequency range

The optimal frequency range is important for algorithm efficiency. Step FSM method 2.2 con-

tains periodic function weights with a period of 2 · π · t. The algorithm precision might be
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Figure 3.7: Time diagram of a system described by transfer function G6(s) with FSM step method.
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improved by considering the summand weight as a periodic function of frequency and time

so all the frequencies should be chosen as pairs (x, x + π/t). Also for higher frequencies the

weight value close to sin() period of π · t is small and frequency range should prefer values

close to n · 1/2 · π · t where n∈ N. For times close to 0 the weight of very low frequency

is small and the Heaviside function aproximation oscillations might be reduced by shifting the

frequency range towards high frequency while simultaneously keeping low frequencies for time

range. The computed frequency values must be reused to avoid algorithmic complexity o(n2).

Non-linear frequency range is not implemented in this thesis.
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Chapter 4

FOPID tuning

This chapter is searching for optimal FOPID controller for common closed feedback system

Ccl(s) = C(s)G(s)/(1 + C(s)G(s)),

where a plant modeled with transfer function G(s) is preceded by controller

C(s) = Kp +Ki/s
λ +Kd · sµ.

FOPID optimization searches for parameters Kp, Ki, Kd, λ, µ by finding the values with min-

imal system weight and where the conditions are true. Weight can be calculated with multiple

methods, this experiment is using Integral Time-weighted Absolute Error (ITAE). Parameters

are searched with iterative Matlab function fmincon(), the default algorithm is interior-point.

Constants [Kp, Ki, λ,Kd, µ] are limited by minimum values [0, 0, 0.01, 0, 0.01] and maximum

values [100, 100, 1, 100, 1], the limits are chosen equal to FOMCON toolbox default values. The

tuning is preliminary, without gain and phase margins.

4.0.1 System with plant G1(s)

System with plant G1 is slow to respond to changes. The optimization process took 145 seconds

and 14 iterations. Found FOPID parametes [Kp, Ki, λ,Kd, µ] are [6.1195·10−07, 100, 1, 8.3657·

10−07, 0.1197]. The result is illustrated in Figure 4.1.
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Figure 4.1: Time diagram of optimized system for plant G1.
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Figure 4.2: Time diagram of optimized system for plant G2.

4.0.2 System with plant G2(s)

System with plant G2(s) optimization resulted in FOPID controller parameters [Kp, Ki, λ,Kd, µ]

values [0.2039, 98.1659, 1, 40.3846, 0.9929]. Optimized system step response is shown in Fig-

ure 4.2. With FSM method optimized system looks to have strong oscillations because the

automatically found frequency is not sufficiently high. The reason for suboptimal frequency

range is a small 5.5dB peak in frequency response. Oscillations created a problem for optimiza-

tion and solution was acquired after maximum number of 50 steps and 855 seconds. For this

system parallel optimization was tested and on computer with two cores the result was obtained

in 823 seconds. This system optimization did not converge at 1000 time steps and the current

result was acquired using 10000 time steps.
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Figure 4.3: Step response diagram with FSM step method for optimized system for plant G3.
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4.0.3 System with plant G3(s)

System with plant G3(s) optimization resulted in FOPID controller parameters [Kp, Ki, λ,Kd, µ]

values [2.5249, 53.9884, 0.9983, 0.7257, 0.7487]. Optimization was finished in 13 steps and 312

seconds. The resulting system has two roots in unstable region as illustrated in Figure 4.5 and

the system is unstable. With FSM method the system looks excellent, ITAE weight for 10000

time points is 0.56 as illustrated in Figure 4.3. With FOMCON method the system is not op-

timized and unstable with minimum at −6 ∗ 1016 as illustrated in Figure 4.4. The optimized

FOPID controller is in practice not usable.
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Figure 4.5: Stability of optimized system for plant G3(s).
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Conclusions

This thesis mentions multiple methods and FSM step method is investigated for FOPID con-

troller optimization. The FSM step method is theoretically correct and for some problems is

significantly more efficient, but in practice due to irregularities described in this thesis, FSM

step method does not always produce reliable results as shown for G6(s) and for optimized

control system for plant described with transfer function G3(s). The FSM step method has

oscillations and precise frequency range must be found. Some methods for finding precise fre-

quency range are produced in this thesis. The conclusion is that FSM step method is sensitive

to calculation parameters and functions. FOPID optimization can search through a wide range

of functions, the problematic functions G4(s), G5(s) and G6(s) were found during search. The

correct result should be considered equal to FOMCON implemented method because the real

world, physical controller will control the plant in discrete time and with that method. Methods

described in this thesis are promising, but currently do not allow for reliable FOPID tuning.

Further investigation is needed for improving the frequency response methods further. Two ar-

eas can be considered, nonlinear frequency range and finding the exact cause of not satisfactory

results with unstable functions.
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