
TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Automaatika instituut

Tallinn 2013

ISS40LT

Dmitry Preobrazhenskiy 093945IASB

3D KRAANA JUHTIMISE MOBIILNE
RAKENDUS IOS SÜSTEEMI JAOKS

Bakalaureusetöö

Eduard Petlenkov
Dotsent

Aleksei Tepljakov
Insener

 2

Autorideklaratsioon

Olen koostanud antud töö iseseisvalt. Kõik töö koostamisel kasutatud teiste autorite tööd,

olulised seisukohad, kirjandusallikatest ja mujalt pärinevad andmed on viidatud.

Käesolevat tööd ei ole varem esitatud kaitsmisele kusagil mujal.

Kuupäev:

Autor:

Allkiri:

 3

Declaration

Herewith I declare that this thesis is based on my own work. All ideas, major views and

data from different sources by other authors are used only with a reference to the source.

The thesis has not been submitted for any degree or examination in any other university.

Date:

Author:

Signature:

 4

3D kraana juhtimise mobiilne rakendus iOS süsteemi jaoks

Annotatsioon

Selle töö põhieesmärk on luua mobiilne rakendus, mis võimaldab kontrollida 3D

kraanaobjekti läbi Wi-Fi võrgu.

Seda rakendust tuleks kasutada siseruumides kraana läheduses ja see peaks töötama iOS

seadmel iPad.

Rakendus peaks näitama ka informatsiooni objekti kohta, sealhulgas tõstevankri asendit,

trossi asendit ja lasti nurka.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 25 leheküljel, 5 peatükki ja 8

joonist.

 5

iOS mobile application for control of 3D crane

Abstract

The main goal of this work is to make a mobile application that allows controlling the 3D

crane object through WI-FI network.

This application should be used indoors near the crane and should work on iOS device

called iPad.

The application should also display the information of the object, which includes the

position of the cart, the position of the thread, and the angle of the freight.

The thesis is in English and contains 25 pages of text, 5 chapters and 8 figures.

 6

Table of contents

1.	
 Introduction	
 ...	
 8	

2.	
 System	
 description	
 ...	
 10	

2.1.	
 3D	
 Crane	
 object	
 ...	
 10	

2.2.	
 MATLAB	
 ...	
 11	

2.3.	
 Simulink	
 ...	
 11	

2.4.	
 Real-­‐Time	
 Windows	
 Target	
 ..	
 12	

2.5.	
 iPad	
 ..	
 13	

3.	
 Modeling	
 and	
 Setup	
 ...	
 14	

3.1.	
 Simulink	
 Model	
 ..	
 14	

3.2.	
 Packet	
 Input	
 setup	
 ...	
 15	

3.3.	
 Packet	
 Output	
 setup	
 ..	
 16	

3.4.	
 Shared	
 Packet	
 setup	
 ..	
 17	

3.5.	
 Model	
 Workspace	
 setup	
 ..	
 17	

3.6.	
 Finalizing	
 the	
 setup	
 ..	
 18	

4.	
 Application	
 ...	
 19	

4.1.	
 Gathering	
 information	
 ...	
 19	

4.2.	
 Requirements	
 ..	
 19	

4.3.	
 Interface	
 realization	
 ...	
 20	

4.4.	
 Code	
 realization	
 ...	
 21	

5.	
 Conclusion	
 ..	
 23	

List	
 of	
 used	
 materials	
 ..	
 25	

 7

List of illustrations

Figure 1. Dataflow .. 8	

Figure 2. 3D Crane ... 10	

Figure 3. Simulink Model ... 14	

Figure 4. Packet Input ... 15	

Figure 5. Packet Output .. 16	

Figure 6. Shared Configuration .. 17	

Figure 7. Model Workspace ... 17	

Figure 8. Application Interface ... 20	

 8

1. Introduction

In modern world there is a need to create applications, that can display and possibly control

remote objects. There are number of possibilities to use different devices for representation

but some of them are better for certain tasks. For this purpose the iPad was chosen as an

iOS device, because it has the parameters needed for this kind of work.

The main reason for that was that in fact, we are dealing with complex system, that consists

of a regular PC, an Ethernet module that is plugged into the WIFI router, the control object

itself, that is connected to the PC and MATLAB environment which serves the purpose of

the interface, that links the hardware and software.

The iPad has the required WIFI module, which can be activated any time and connect itself

with the system, making a closed info system. In this case, the iPad, is the client side that

send/receives information, coding and decoding it. The PC and MATLAB serves as a

server, which processes the information and the crane is the object that is being controlled.

Figure 1. Dataflow

 9

Based on the knowledge of the system, the mail goal of this work is to create an application

that will be installable on the iPad and will be available in the App Store for download.

This application can be used in different ways, but there are two main scenarios that are

specifically required.

Firstly, the application should be used in the laboratory, to demonstrate how the control

object works. This means, that the basic setup of the application should be understandable

and should not require a lot of work. This also means that the interface should be user-

friendly and display all the required information logically.

Secondly, the application should be used to check the physical specification of the control

object, including sending specific values to the control object and resetting it’s position to

center and to home.

 10

2. System description

2.1. 3D Crane object

The 3D crane is a non-linear electromechanical system having a complex dynamic behavior

and creating challenging control problems. The system itself is controlled from a PC. The

mechanical unit is supplied with a power supply, interface to a PC and a dedicated A/D,

D/A board configured in Xilinx technology. [1]

	

Figure 2. 3D Crane	

	

 11

The payload is lowered and lifted in the z direction. Both the rail and cart are capable of

horizontal motion in the x direction. The cart is capable of horizontal motion along the rail

in the y direction. Therefore the payload attached to the end of the lift-line can move freely

in 3 dimensions and three DC motors drive the crane.

There are five identical measuring five state variables: the cart coordinates on the

horizontal plane, the lift-line length, and two deviation angles of the payload. There are also

3 limit switches that do not allow the values to exceed their maximum to avoid damage.

The power interface amplifies the control signals, which are transmitted from the PC to the

DC motors. It also converts the encoders pulse signals to the digital 16-bit form to be read

by the PC.

The PC equipped with the RT-DAC/PCI multipurpose digital I/O board communicates with

the power interface board. The while logic necessary to activate and read the encoder

signals and to generate the appropriate sequence of the pulses of PWN to control the DC

motors is configured in the Xilinx chip of the RT-DAC/PCI board. All functions of the

board are accessed from the 3D Crane Toolbox, which operates directly in the

MATLAB/Simulink environment.

2.2. MATLAB

MATLAB is a high-level language and interactive environment for different kind of tasks,

such as numerical computation, visualization and programming. It can be used for different

king of purpose, but what is most interesting, is to create a model for a control system.

While the model itself can be programmed using the specific language, there is a specific

tool that is used in conjunction with MATLAB, called Simulink. [2]

2.3. Simulink

Simulink is a block diagram environment for simulation and Model-Based Design, which

provides a graphical editor, customizable block libraries, and solvers for modeling and

simulating dynamic systems. [3]

 12

Blocks, the main feature of Simulink, are mainly used to create a detailed block diagram of

the system. They are highly customizable with functions that can be hand-written with

MATLAB, C, Fortran or Ada.

There are many different block libraries available with standard Simulink package, but

there are some specific tools required to create such a system, that is described in current

work. These tools are used for rapid prototyping and HIL simulation, but what is mainly

needed is the package called “Real-Time Windows Target”.

2.4. Real-Time Windows Target

Real-Time Windows Target provides a real-time engine for executing Simulink models on

a Microsoft Windows PC and block that connect to a range of I/O boards, enabling to

create and control a real-time system for rapid prototyping or hardware-in-the-loop

simulation. [4]

The package comes with a library, which has blocks for input and output, varying from

analog to digital. It also has two interesting sets of block, one of which is Packet Input –

Packet Output and Stream Input – Stream Output. The main difference between them that

the first one is used to send and receive unformatted binary data and the second one is used

to receive and send formatted ASCII data. Both sets are operating with the “Standard

Devices UDP Protocol”.

The Packet Input bock has a subset of parameters which can be configured/activated:

§ Sample time

§ Input packet size

§ Block output data types

§ Show “Data Ready” port

§ Show “Data Error” port

Sample time – value that represents the frequency the block executes and interacts with the

I/O hardware and synchronizes the model with the real-time clock at this sample rate.

 13

Input packet size – number of bytes expected in each input packet. This number must be the

same as the number of bytes required by “Block output data types”.

Block output data types – string or a cell array of strings that specifies how the data in each

package obtained from the device is to be typed and grouped for input to the application.

The block has an output port corresponding to each string. Each string has the format

[n*]datatype. The data described by the string has the type specified by the datatype and

the width specified by n; or 1 if n is not specified.

Show “Data Ready” port – indicates that the block has an output port that signals 1 if the

block has new data available, and 0 otherwise.

Show “Data Error” port – indicates that has an output port that signals 1 if a data error has

occurred, and 0 otherwise.

The Packet Output block has a same subset, with the difference that the Input is changed to

Output. (Output packet size, Output packet field data types).

2.5. iPad

iPad is the line of tablet computers designed by Apple Inc, which carries onboard the Wi-Fi

and cellular connectivity modules. The interface is build around device’s multi-touch

screen, which also includes the virtual keyboard. The screen size is 197x148 mm and

supports different orientations: portrait and landscape mode. [5]

The iPad only runs the software, which is either downloaded from Apple’s App Store or

written by developers, who paid for a developer’s licence in registered devices.

In order to develop an application, a MacBook is needed with the developer’s studio called

Xcode.

 14

3. Modeling and Setup

Figure 3. Simulink Model

3.1. Simulink Model

The template for this model was taken from a demo provided by Inteco LLC. The Packet

Input and Packet Output blocks were added and configured with the correct settings. The

xValue, yValue and zValues were amplified by using the gain blocks, which were

configured using the Model Workspace constants.

 15

3.2. Packet Input setup

Figure 4. Packet Input

The main setup was to configure the Input packet size and Block output data types. It was

decided that the iOS application would be sending a package with 3 double values, the new

x, y, and z positions. Each double value is 8 bytes, so a total of 24 bytes were needed for

the packet. Based on these requirements the {“1*double”,“1*double”,“1*double”} string

was formed. [6]

 16

3.3. Packet Output setup

Figure 5. Packet Output

The setup process for the Packet Output block is the same as Packet Input block, the

difference is that instead of 3 double values, there are 2 more additional values needed.

These are the two deviation angles of the payload. Based on these requirements

{“1*double”,“1*double”,“1*double”,“1*double” ,“1*double”} string was formed. [7]

 17

3.4. Shared Packet setup

Figure 6. Shared Configuration

The Input and the Output Packet blocks both have the Board Setup Option, which openes

this view. By standart, these blocks use 2013 UDP port, and the Remote address should the

the client’s address. The client in this work is the iPad with an application running on it.

3.5. Model Workspace setup

Figure 7. Model Workspace

The xPosition, yPosition are the maximum values of the cart and rail movements and

zPosition the maximum lift-line length in meters. The Kp and Ki are PID controller’s

Proportional and Integral values, which were predefined.

 18

3.6. Finalizing the setup

After all the settings have been configured and each time the client’s address needs to be

changed, the module should be rebuild using the Ctrl+B keyboard shortcuts or Code ->

C/C++ Code -> Build Model in the upper toolbar.

After the build is done, the model should be connected to the target with the Simulation ->

Connect To Target and the the model should be runned by using Simulation -> Run or the

Ctrl+T keyboard shortcut.

If there are no error, the crane is set up and will begin receiving and sending UDP packets.

 19

4. Application

4.1. Gathering information

UDP protocol is a simple transmission model with a minimum of protocol mechanism it

does not have any guarantee of delivery, ordering or duplicate protection. One of its key

features is that two computers can send and receive messages without prior

communications to set up special transmissions channels or data paths. [8]

4.2. Requirements

The interface of the application should consist of these parts:

§ Grid representing the cart position

§ Movable object that controls the cart

§ Vertical slider that represents the position of the thread

§ Movable object that controls the thread

§ Circular zone representing the payload angles

§ Visualization of current coordinates

§ Inputs of new coordinates

§ Two buttons to reset the position

§ Input of server’s IP

§ Start/stop connection button

System requirements:

§ Control should be done by user’s gestures

§ Application should accept manual input of the control values

§ Application should be using Wi-Fi to connect

§ Application should be installable to any iPad device

§ Server’s IP should be dynamically assigned

 20

4.3. Interface realization

Figure 8. Application Interface

The colors of the application are chosen according to the specification and the design of the

interface is build for landscape mode to fit all the required information and to have enough

space to separate the information.

There are two zones that react to user’s gestures, the grid with the yellow border and the

vertical yellow slider. These two zones both react to standard tap and pan gestures. They

are used to manually control the cart and the thread position. [9]

The manual input of the control values are done under the “Set Coordinates” section and

are finilized after pressing the “Set” button. “Home” button resets the position of the cart

and thread to their default values and the “Center” button moves the cart and thread to a

predefined position.

 21

4.4. Code realization

The are two main methods that convert values to UDP packet and parse incoming UDP

package.

-­‐	
 (void)sendControlObject:(CCControlObject	

*)controlObject	
 {	

	
 	
 	
 	
 [controlObject	

showAttributesWithBlock:^(NSDictionary	
 *attributes,	

NSError	
 *error)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 if	
 (error)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 [CCErrorHandler	
 handleError:error];	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 return;	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 	
 	
 	
 double	
 xPosition	
 =	
 [[attributes	

objectForKey:xCurrentPositionKey]	
 doubleValue];	

	
 	
 	
 	
 	
 	
 	
 	
 double	
 yPosition	
 =	
 [[attributes	

objectForKey:yCurrentPositionKey]	
 doubleValue];	

	
 	
 	
 	
 	
 	
 	
 	
 double	
 zPosition	
 =	
 [[attributes	

objectForKey:zCurrentPositionKey]	
 doubleValue];	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 NSMutableData	
 *sendingData	
 =	
 [NSMutableData	

dataWithBytes:&yPosition	
 length:sizeof(double)];	

	
 	
 	
 	
 	
 	
 	
 	
 [sendingData	
 appendBytes:&xPosition	

length:sizeof(double)];	

	
 	
 	
 	
 	
 	
 	
 	
 [sendingData	
 appendBytes:&zPosition	

length:sizeof(double)];	

	

	
 	
 	
 	
 	
 	
 	
 	
 [[CCSender	
 instance]	

sendDataWithBytes:sendingData];	

	

	
 	
 	
 	
 }];	

}	

 22

-­‐	
 (void)retrieveObjectWithData:(NSData	
 *)data	
 {	

	
 	
 	
 	
 NSUInteger	
 lengthOfData	
 =	
 [data	
 length];	

	
 	
 	
 	
 NSUInteger	
 sizeOfDouble	
 =	
 sizeof(double);	

	
 	
 	
 	
 NSUInteger	
 numberOfObjects	
 =	
 lengthOfData	
 /	

sizeOfDouble;	

	

	
 	
 	
 	
 const	
 void	
 *bytes	
 =	
 [data	
 bytes];	

	
 	
 	
 	
 double	
 xReceivedPosition	
 =	
 0;	

	
 	
 	
 	
 double	
 yReceivedPosition	
 =	
 0;	

	
 	
 	
 	
 double	
 zReceivedPosition	
 =	
 0;	

	
 	
 	
 	
 double	
 xReceivedAngle	
 =	
 0;	

	
 	
 	
 	
 double	
 yReceivedAngle	
 =	
 0;	

	
 	
 	
 	
 if	
 (data.length	
 &&	
 numberOfObjects	
 ==	
 5)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 while	
 (lengthOfData	
 >	
 0)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 memcpy(&yReceivedPosition,	
 bytes,	

sizeOfDouble);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 bytes	
 +=sizeOfDouble;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 lengthOfData	
 -­‐=sizeOfDouble;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 memcpy(&xReceivedPosition,	
 bytes,	

sizeOfDouble);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 bytes	
 +=sizeOfDouble;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 lengthOfData	
 -­‐=sizeOfDouble;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 memcpy(&zReceivedPosition,	
 bytes,	

sizeOfDouble);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 bytes	
 +=sizeOfDouble;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 lengthOfData	
 -­‐=sizeOfDouble;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 memcpy(&xReceivedAngle,	
 bytes,	

sizeOfDouble);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 bytes	
 +=sizeOfDouble;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 lengthOfData	
 -­‐=sizeOfDouble;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 memcpy(&yReceivedAngle,	
 bytes,	

sizeOfDouble);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 bytes	
 +=sizeOfDouble;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 lengthOfData	
 -­‐=sizeOfDouble;	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 }	

}	
 	

 23

5. Conclusion

Writing this work started with gathering information and analyzing specific requirements

for the upcoming application. Initially, the prototype was made for the iPhone, but due to

the fact, that the interface has a lot of information, it was decided to keep only the iPad

version.

Writing for iPad is always challenging, because this device supports different orientation

and has a lot of space available to present the information. When making design, it should

be taken in consideration how the end user will interact with the application, the main goal

is to find the right balance between usability and specific requirements.

The 3D crane is not an ordinary object and building this type of applications from scratch

should always start with first presenting a prototype before making and polishing the

interface. The whole application has around 2000 lines of code including whitespaces but

excluding the interface design.

The goals of the work were achieved and the application was send to the App Store for

approval, which took around one week from review to the commence. By the time or

writing, the application is avaiable world wide and can be download on any iPad with iOS

5.0+ [10]

The first problem encountered during writing the work was related to the fact, that the X

and Y axis on the device are not the same as X and Y axis of the 3D Crane. This problem

affected the way the gestures and the feedback was working on the device.

The second problem was related to the gestures, zones and how the objects are drawn on

the screen. When using pan gesture, the movable object for the crane and thread should not

leave its’ zone and if we move the finger out of the zone, the gesture recognition should not

end and correctly redisplay the movable objects.

 24

The third problem was related to submitting the application for the review. Apple team has

an unwritten rule, that when they are reviewing applications that are dealing with some real

physicals objects, they need a demonstration video of how this application should work.

This application, if developed further, has a very big potential in terms of functionality and

the tasks that it can handle. For example, the payload currently only displays its angles, but

in a real life situation, this application would benefit, if it could calculate the route of the

cart from the initial point to the destination, making such path, that the payload would be

kept as stable as possible. Another benefit would be, it there could be additional

visualization tools introduced in the application, such as web cam video that streams the 3D

Crane movement. There is also a field of optimizations to be made in the Simulink model

to make the movement more stable and more accurate.

The application code is also well structured and written using the paradigms of Object-

Oriented Programming, meaning that the application can be adaptable to any object, that

has the same physical properties.

This application will benefit anyone who is willing to learn MATLAB/Simulink models

and who is interested in control systems.

 25

List of used materials

[1] Inteco LLC, “3D Crane”. [Online]. Available:
http://www.inteco.com.pl/index.php?option=com_content&view=article&id=6&Itemid
=12 [Accessed 05.06.13].

[2] The MathWorks Inc, “MATLAB”. [Online]. Available:
http://www.mathworks.se/products/matlab/ [Accessed 05.06.13].

[3] The MathWorks Inc, “Simulink”. [Online]. Available:
http://www.mathworks.se/products/simulink/ [Accessed 05.06.13].

[4] The MathWorks Inc, “Real-Time Windows Target”. [Online]. Available:
http://www.mathworks.se/products/rtwt/ [Accessed 05.06.13].

[5] Wikimedia Foundation Inc, “iPad”. [Online]. Available:
http://en.wikipedia.org/wiki/IPad#Screen_and_input [Accessed 05.06.13].

[6] The MathWorks Inc, “Packet Input”. [Online]. Available:
http://www.mathworks.se/help/rtwin/ref/packetinput.html [Accessed 05.06.13].

[7] The MathWorks Inc, “Packet Output”. [Online]. Available:
http://www.mathworks.se/help/rtwin/ref/packetoutput.html [Accessed 05.06.13].

[8] Wikimedia Foundation Inc, “User Datagram Protocol”. [Online]. Available:
https://en.wikipedia.org/wiki/User_Datagram_Protocol [Accessed 05.06.13].

[9] Wikimedia Foundation Inc, “Multi-touch”. [Online]. Available:
http://en.wikipedia.org/wiki/Multi-touch [Accessed 05.06.13].

[10] Apple Inc, “3D Crane Control”. [Online]. Available:
https://itunes.apple.com/ee/app/3d-crane-control/id656415163?mt=8 [Accessed
05.06.13].

