
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Andrei Moissejev 143691

MAGNETIC LEVITATION SYSTEM
SIMULATION IN VIRTUAL REALITY

Master's thesis

Supervisor: Aleksei Tepljakov

PhD

Tallinn 2018

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Andrei Moissejev 143691

MAGNETILISE LEVITATSIOONI
SÜSTEEMI SIMULATSIOON

VIRTUAALREAALSUSES

Magistritöö

Juhendaja: Aleksei Tepljakov

PhD

Tallinn 2018

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Andrei Moissejev

3

Abstract

Magnetic Levitation System Simulation In Virtual Reality

This work documents the process of development of an interactive and dynamic

magnetic levitation system that operates within the virtual reality environment.

The first part of the thesis provides a definition of the tasks this project is meant to

accomplish as well as an introductory overview of the software tools used during the

development of this application : primarily Unreal Engine and Simulink.

Most of the thesis documents the development process of the application and the

thought process behind certain design decisions. The reader is also introduced to the

variety of inherent software limitation problems faced when attempting to build an

accurate dynamic model within a game engine environment.

Throughout the course of the development, some existing code solutions for particular

problems from similar projects by other university students were borrowed and

implemented within this application.

The majority of the work was done within the Unreal Engine game engine, which has

inbuilt support for virtual reality. This, in turn, allows the end user to interact with the

control system in a capacity similar to reality.

This thesis is written in English and is 51 pages long, including 9 chapters, 34 figures

and 2 tables.

4

Kokkuvõte

Magnetilise Levitatsiooni Süsteemi Simulatsioon Virtuaalreaalsuses

Antud teos dokumenteerib interaktiivse dünaamilise magnetilise levitatsiooni süsteemi

arenduskäigu, mis toimib virtuaalses keskkonnas.

Lõputöö esimeses osas on defineeritud antud projekti eesmärk ning lisatud põgus

ülevaade kasutatud tarkvaradest, mille abil antud rakendust arendati. Peamiselt on

nendeks Unreal Engine ja Matlab.

Enamik lõputööst käsitleb antud rakenduse arendustööd ja vajalikku eelnevat mõttetööd.

Ühtlasi saab lugeja hea aimduse tarkvara piiratusest, mis ilmnes siis kui autor üritas luua

realistlikku mudelit arvutimängumootori keskkonnas.

Arendustöö käigus laenas autor teatud probleemide lahendamiseks koodilõike teiste

ülikoolide õpilaste sarnastest töödest ning kohandas neid antud projekti tarbeks

vastavalt vajadusele.

Enamik tööst on tehtud mängumootori Unreal Engine abil, mis toetab virtuaalreaalsuse

keskkonna loomist. Tänu sellele saab lõppkasutaja juhtida antud süsteemi tegelikkusega

võrreldavas ulatuses.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 51 leheküljel, 9 peatükki, 34

joonist, 2 tabelit.

5

List of abbreviations and terms

UE Unreal Engine

VR Virtual Reality

MLS Magnetic Levitation System

CMD Command Prompt

A-Lab Alpha Control Laboratory

6

Table of Contents

1 Introduction..11

2 Project Overview..12

2.1 Project Objectives..12

2.2 Completion Strategy..12

2.3 Unreal Engine Overview..13

2.3.1 Code Compiler..13

2.3.2 Blueprint Visual Scripting System...13

2.3.3 Physics Simulation...14

2.4 Matlab & Simulink Overview..14

3 Mathematical Model Implementation..15

3.1 Velocity Acceleration Implementation..17

3.2 Coil Current Acceleration Implementation..20

4 PID Controller Implementation..24

4.1 Proportional Term..26

4.2 Integral Term..26

4.3 Derivative Term...28

4.4 Term Summation..29

5 Network Interface Implementation...30

5.1 Simulink Network Interface...30

5.2 Unreal Engine Network Interface..34

6 System Validation...36

6.1 Coil Current Acceleration Modifier Model Selection..36

6.2 Unreal Engine Magnetic Levitation System Validation....................................39

7 Virtual Reality Implementation..45

8 Level Design...46

9 Conclusion..49

 References..50

7

List of Figures

Figure 1. Example of PhysX particle physics..14

Figure 2. Physical model of the MLS..16

Figure 3. “set_distance” function code, it applies force to the ball.................................19

Figure 4. Coil current simulation model within the game level......................................21

Figure 5. “set_amperage” function code, it regulates amperage simulation...................23

Figure 6. MLS Simulink diagram..24

Figure 7. Ball position over time in PID and FOPID simulations...................................25

Figure 8. PID controller block internal diagram..25

Figure 9. “p_control” function code, it outputs proportional term value........................26

Figure 10. “i_control” function code, it outputs integral term value...............................26

Figure 11. PID delta_time variable assignment blueprint...27

Figure 12. Integrator block options...27

Figure 13. “d_control” function code, it outputs derivative term value..........................28

Figure 14. Derivative components blueprint flow...28

Figure 15. “set_voltage” function code, it outputs voltage value....................................29

Figure 16. PID gain factors initialization blueprint...29

Figure 17. Packet Input block setup..31

Figure 18. Project frame rate settings in Unreal Engine..32

Figure 19. Task Manager details...32

Figure 20. CMD command “netstat -a -o -n” result..33

Figure 21. “Andmed.h” structure variable declaration code portion...............................34

Figure 22. Network components initialization blueprint...35

Figure 23. Simulink diagram voltage and coil current characteristics............................36

Figure 24. Unreal Engine MLS voltage and coil current characteristics.........................37

Figure 25. Voltage and coil current during simulation..38

Figure 26. MagLev Model block parameters..39

Figure 27. Simulink and UE MLS simulation results...40

Figure 28. UE MLS simulation results with different initial conditions.........................41

8

Figure 29. Simulink and UE MLS simulation results after modification........................42

Figure 30. UE modified MLS simulation results with different initial conditions..........43

Figure 31. Modified UE MLS response to a minor and major disturbance....................44

Figure 32. Finished MLS level environment...46

Figure 33. Imported ball mesh resting on a platform..47

Figure 34. Collision columns during run-time and development....................................48

9

List of Tables

Table 1. Acceleration modifier value calculated by distance..18

Table 2. Amperage modifier value calculated by distance..22

10

1 Introduction

Education is one of the most heavily regulated sectors of human endeavour. The

excessive regulation and reluctance to change can produce consistent results but this

inertia can also work to inhibit progress in efficiency that technological innovation

generally introduces to an existing system.

Because it is difficult to change the existing structural content that comprises education,

what has recently been attempted is introduction of entertainment value into the

educational process, otherwise known as edutainment.

The entertainment sector, in contrast, is something that is very prone to change and

unpredictability. One of the more recent introductions into the market is virtual reality

technology which is mostly supported by a niche audience, but is increasingly gaining

more support and interest from the wider public [1] .

This push for interactive content that is both educational and entertaining can certainly

benefit from the rising popularity of virtual reality. It can be seen as a perfect vector for

delivering content that provides additional dimension of interaction that is yet to

become mainstream.

This project in particular focuses on simulating a magnetic levitation system which can

be used as an object of study in control theory. Introduction of virtual reality will allow

students to interact with the control system in a remote virtual environment.

11

2 Project Overview

2.1 Project Objectives

The main objective of this practical project is to create a dynamic magnetic levitation

system for use in interactive virtual reality applications, the built model must adequately

represent how the system functions in reality.

The primary tools to accomplish this project would be the following software :

• Unreal Engine – a game engine;

• Simulink – a graphical programming environment.

2.2 Completion Strategy

The following steps were taken to bring the project to completion :

1. Build a levitation system in Unreal Engine that is based on the mathematical

model of the levitation control system provided by A-Lab;

2. Implement a control algorithm in Unreal Engine that is based on a functional

Simulink PID control system provided by A-Lab;

3. Implement a network interface between Unreal Engine and Simulink that would

allow a running Simulink model to validate the built system;

4. Validate the system using the existing Simulink PID control system to ensure

that an adequate level of accuracy and realism has been achieved. Adjust the

Unreal Engine model parameters and control algorithm as deemed necessary

until system performance is sufficiently acceptable;

12

5. Introduce virtual reality controller support into the application;

6. Design the simulation level environment using the provided assets.

Every step is thoroughly described in a dedicated section of this document, various

implementation design decisions that were necessary to make throughout the project are

also sufficiently justified where mentioned.

2.3 Unreal Engine Overview

Unreal Engine is a game engine developed by Epic Games [2] . Though primarily used

for building games, it is also a perfect tool for realizing a project such as this. UE is free

to use, supports VR and is highly customizable. In addition to this, the engine

functionality is very well documented [3] .

2.3.1 Code Compiler

The engine code for UE is written in C++. For the purposes of writing custom code and

compiling it, an external integrated development environment is used – Microsoft

Visual Studio [4] . The free version of the development environment will be satisfactory

for a project of this scope [5] .

2.3.2 Blueprint Visual Scripting System

One of the more unique elements of UE is its' Blueprint Visual Scripting system [6] . It

is a scripting system that allows to forego traditional literal coding and replace it with a

node-based interface to create gameplay elements from within Unreal Editor.

This is a system that is very much reminiscent of module driven development wherein

interactions between objects are modelled by a human operator on an abstract layer and

the software works to translate built models and relationships into literal code [7] .

This Blueprint Visual Scripting system is very flexible and allows user to use virtually

the full range of concepts and tools generally only available to programmers, it also

allows for implementation and use of any custom written C++ code.

13

2.3.3 Physics Simulation

Unreal Engine uses the PhysX 3.3 physics engine to drive its physical simulation

calculations and perform all collision calculations [8] . In video games, PhysX is most

noticeable when used for graphical fidelity and realism : generating particles and debris.

2.4 Matlab & Simulink Overview

Matlab is a software environment primarily used by scientists and engineers for the

purposes of analysis and design of various systems, primarily those that involve

computational data [9] . It is very convenient for use in analysis of large data sets, the

code language of Matlab is easy to learn and can be integrated with other languages.

Simulink is an environment for simulation and model-based design of dynamic and

embedded systems [10] . It is integrated with Matlab and allows to create various sorts

of complex system simulations through its' graphical block diagram building.

14

Figure 1. Example of PhysX particle physics.

3 Mathematical Model Implementation

The mathematical model of the system is provided by an academic paper authored by

Aleksei Tepljakov, Eduard Petlenkov, Juri Belikov and Emmanuel A. Gonzalez [11] .

ẋ1=x 2

ẋ2=−
c (x1)

m
x3

2

x1
2 +g

ẋ3=
fip2

fip1

i (u)−x3

e
−

x1

fip2

Where x1 is the position of the sphere, x2 is the velocity, x3 is the coil current,

fip1=1.1165×10−3 m / s ,

fip2=26.841×10−3 m ,

c (x1)=3.9996 x1
4
+3.9248 x1

3
−0.34183 x1

2
+0.007058 x1+2.9682×10−5 ,

i(u)=−0.3 u2
+2.6 u−0.047 ,

m=0.0585kg ,

g=9.81m /s2 ,

e=2.71828 .

It should be noted that the voltage control signal is normalized and has the range of u ∈

[0 , 1] and this corresponds to the pulse-width modulation duty cycle 0 … 100%. In

addition to this, the deadzone in control is udz [0 , 0.0182].∈

15

There were a total of two implementation options that were worth consideration :

1. Calculate the value of x1 – the sphere position to directly set the position of the

sphere object within the simulation :

• Allows maximum degree of control over the system,

• The relationships between position, velocity, acceleration and their influence

on each other must be manually calculated,

• User interaction, gravity and dynamic response to a physical disturbance

must be manually programmed for the system to properly behave;

2. Calculate the value of x2' – the sphere velocity acceleration and use PhysX

functionality to apply force to the object within the simulation :

• No direct control over the sphere position, only the force applied to it,

• Defer all physics-related calculations to PhysX : gravity, physical disturbances,

user interactions, relationship between position, velocity and acceleration.

16

Figure 2. Physical model of the MLS.

The second option was selected for this project, primarily due to the necessity of user

interaction. Writing a custom physics framework within an engine that already has a

functional physics engine would be wasteful. As a consequence, the system becomes a

grey box model where there is partial understanding of the theoretical structure – which

is the provided mathematical model, and data – which is the Simulink PID model that

will be used for validation.

Though the first steps of the project are to recreate the mathematical and control system

models provided, it is important to remember that the primary objective is to have the

system perform as it does in reality – this means that the models that will operate within

the engine will be freely adjusted upon necessity with little theoretical justification if the

practical results produce a more accurate output. This is done, primarily, to compensate

for the inability of Unreal Engine to perfectly replicate the results of a theoretical model

for which the engine is not designed to work with in the first place.

3.1 Velocity Acceleration Implementation

ẋ2=−
c (x1)

m
x3

2

x1
2 +g

In order to observe how much of an impact the ball position can have on the value of

acceleration the original formula will be transformed.

If all the constants in the formula were given their real values and the distance variable

was accounted for in a separate function, the resulting equation would take this form :

ẋ2= y (x1)× x3
2 ,

where y is the acceleration modifier the value of which depends entirely on the distance

of the ball, x3 is coil current, g is removed from this equation because Unreal Engine

will automatically enforce gravitational pull on the ball object.

For the object to be lifted off the platform, the acceleration should be of greater value

than the gravitational pull of the planet, because of this the acceleration modifier should

17

be of sufficient negative value. Coil amperage squared will always be a positive value

that is relatively small considering that the current cannot exceed 2.25 amperes.

Sphere position has the range of x1 [0 , 0.0155], however, the model permits to∈

calculate this position in two ways : position from the ceiling of the platform, or

position from the bottom of the platform. The table below shows how the value of the

acceleration modifier will change depending on how the ball position will be calculated.

Table 1. Acceleration modifier value calculated by distance.

Position,
from floor

Acceleration
Modifier

Position,
from ceiling

Acceleration
Modifier

0.0000 -4.68354E+30 0.0155 -5.10882818

0.0010 -622.2580991 0.0145 -5.877844932

0.0020 -181.462147 0.0135 -6.795944264

0.0030 -90.95123185 0.0125 -7.905294658

0.0040 -56.30014006 0.0115 -9.265159673

0.0050 -38.9192135 0.0105 -10.96130465

0.0060 -28.76403622 0.0095 -13.12222836

0.0070 -22.22017772 0.0085 -15.9486537

0.0080 -17.70693375 0.0075 -19.77055802

0.0090 -14.4356211 0.0065 -25.16630566

0.0100 -11.97329846 0.0055 -33.23714967

0.0110 -10.06442565 0.0045 -46.32709084

0.0120 -8.549319813 0.0035 -70.2828655

0.0130 -7.323496503 0.0025 -123.7662735

0.0140 -6.315944517 0.0015 -300.1948638

0.0150 -5.476841766 0.0005 -2265.027921

0.0155 -5.10882818 0.0000 -4.68354E+30

The modulo of the acceleration modifier is the lowest in the starting rest position and

highest at the peak. If the coil current were to be constant, the acceleration of the ball

18

would reach its' peak when already at the ceiling while the acceleration modifier at

starting position would be at its' lowest.

The acceleration modifier is at its' peak in the starting position and as the ball reaches

higher towards its' intended position – the acceleration should naturally slow down. This

would be the preferable distance model to use given the logic of the situation. To

implement the equation and its' effect on the ball, a custom C++ function is written and

implemented within the blueprint system.

Amperage is the value of coil current which is calculated by a different function, force

origin is the location of one of the platforms within the simulation, it is fed into the

function to determine where the centre of the force of attraction will be. Distance is the

ball position that is calculated by one of the distance functions.

Force limit is the first variable introduced into the system that is there to facilitate

proper functionality within the Unreal Engine specifically, it limits the amount of force

19

float part1 =
3.9996 * pow(distance, 4)
+ 3.9248 * pow(distance, 3)
- 0.34183 * pow(distance, 2)
+ 0.007058 * pow(distance, 1)
+ 2.9682 * pow(10, -5); //c(X1)

float part2 = -0.0585; //m
float part3 = pow(distance, 2); //X1^2
float part4 = pow(amperage, 2); //X3^2
float part5 = part1 / (part2 * part3);
float part6 = part4 * part5;

float force_strength = part6 * 10; //for UE purposes
float force_radius = 55; //force radius
float force_limit = 5000; //force limit

if (force_strength > 0)
force_strength = 0;

else if (force_strength < -force_limit)
force_strength = -force_limit;

//GEngine->AddOnScreenDebugMessage(-1, 0, FColor::Blue,
//FString::Printf(TEXT("\n ball acceleration is %f"), force_strength));

reference_ball->AddRadialForce(force_origin, force_radius,
force_strength, ERadialImpulseFalloff::RIF_Constant, true);

Figure 3. “set_distance” function code, it applies force to the ball.

that can be applied to the object and is necessary due to potential clipping issues :

because the acceleration modifier can reach very high values, it is possible for

acceleration to be so large that the object bypasses any barriers set up to prevent

movement, in reality such high acceleration cannot be achieved by the system in

question, but the mathematical model allows it. The actual value of the variable will be

estimated during the validation phase. Force radius determines the range in which

attraction is possible and is set to encompass the area that is experimentally determined

to be appropriate for the system. The force applied has no fall-off that depends on the

distance from force origin – this is so because the force itself will be changing and such

dynamics are not accounted for in the mathematical model.

The built-in Unreal Engine function used for simulating magnetism is AddRadialForce

[12] . Several variables are used to facilitate its' work : Origin (Vector) to determine the

location of the force, Radius (Float) to determine the radius of the force field, Strength

(Float) to determine the strength of the force, Falloff (ERadialImpulseFalloff) which

allows to control the strength of force as a function of distance from the force origin,

Accel Change (Boolean) which if true, makes it so that the strength is taken as a change

of acceleration instead of a physical force, meaning it will ignore mass – this variable is

set to true since the mathematical model is designed to account for the ball acceleration

and not the magnetic field.

The force applied is only allowed to be of negative value, meaning it will attract the

object only, if the object must descend – attraction force is nullified and gravitational

pull brings the object down.

3.2 Coil Current Acceleration Implementation

The mathematical model delivers the value of the acceleration of coil current and not

the current itself. Instead of creating a separate mathematical function to calculate the

value of current, a physics object is created inside the simulation level to model the

behaviour of coil current based on its' acceleration.

20

The coil current is modelled by the red plate physics object with no mass and no

gravitational pull. The plate is placed between two columns with a space in between

them for the plate to ascend and descend, the region in which the plate can move

corresponds to the current range of 0 to 2.25 amperes.

Only the coil acceleration affects the movement of the plate, the function used to move

the plate within the simulation is the same function used in magnetism simulation :

AddRadialForce. The difference would be in that the coil current simulation does not

involve radial force falloff and the force can also be of positive value to push the object

downward. In short : the calculation of current based on its' acceleration is deferred to

the engine and the position of the object in relation to the top of the bottom column

would equal the value of the coil current if the system is properly set up.

21

Figure 4. Coil current simulation model within the game level.

ẋ3=
fip2

fip1

i (u)−x3

e
−

x1

fip2

To observe how much of an impact the ball position can have on the value of coil

current acceleration the original formula will be transformed.

If all the constants in the formula were given their real values and the distance variable

was accounted for in a separate function, the resulting equation would take this form :

ẋ3=z (x1)×(i(u)−x3) ,

where z is the coil current acceleration modifier – hereafter named amperage modifier,

the value of which depends entirely on the distance of the ball, x3 is coil current, i(u) is a

function of voltage that will be reviewed in this document later.

Similar to the previous section, both available distance models and their effect on

acceleration modifier will be reviewed.

Table 2. Amperage modifier value calculated by distance.

Position,
from floor

Amperage
Modifier

Position,
from ceiling

Amperage
Modifier

0.0000 24.04030452 0.0155 42.82860186

0.0010 24.95285359 0.0145 41.26232006

0.0020 25.90004222 0.0135 39.75331863

0.0030 26.88318531 0.0125 38.2995028

0.0040 27.90364766 0.0115 36.89885436

0.0050 28.96284588 0.0105 35.54942893

0.0060 30.06225033 0.0095 34.24935325

0.0070 31.20338723 0.0085 32.99682255

0.0080 32.38784068 0.0075 31.79009805

0.0090 33.61725497 0.0065 30.6275046

0.0100 34.89333675 0.0055 29.50742827

22

0.0110 36.21785748 0.0045 28.42831417

0.0120 37.59265587 0.0035 27.38866428

0.0130 39.01964042 0.0025 26.38703535

0.0140 40.50079205 0.0015 25.42203693

0.0150 42.03816692 0.0005 24.49232939

0.0155 42.82860186 0.0000 24.04030452

The values the amperage modifier can take are much more consistent and mild than

those present for the ball acceleration modifier, any differentiation in distance also

produces a much smaller change. From the outset it is difficult to determine which of

the distance models is more desirable, both will be tested during validation.

To impart acceleration unto the plate which models coil current, a custom C++ function

is written and implemented within the blueprint system.

Voltage is the value of voltage which is calculated by a different function, force origin

is the location of the coil current platform within the simulation, it is fed into the

function to determine where the centre of the force of attraction will be. Distance is the

ball position that is calculated by one of the distance functions – which one specifically

would be determined in the validation phase.

23

float part1 = (-0.3 * pow(voltage, 2) + 2.6 * voltage - 0.047 - amperage);
float part2 = pow(2.71, (distance / 0.026841));
float part3 = 24.04030452 * part2;
float part4 = part1 * part3;

float force_strength = part4 * -10; //special *-10 for UE functionality
float force_radius = 200;

reference_amperage->AddRadialForce(force_origin, force_radius,
force_strength, ERadialImpulseFalloff::RIF_Constant, true);

Figure 5. “set_amperage” function code, it regulates amperage simulation.

4 PID Controller Implementation

In the MLS Simulink diagram and mathematical model, voltage is considered the input

signal. It is calculated using a PID controller based on the set point deviation – the

proportional term, set point continuous history – the integral term, and the deviation rate

of change – the derivative term.

A proportional-integral-derivative controller is a control loop feedback mechanism that

continuously calculates an error value as the difference between a desired set point and

a measured process variable and applies a correction based on the three terms, it is

widely used in industrial control systems [13] .

In the case of this project, the measured process variable is the ball position and the

controller provides relevant voltage output for the system to correct any deviation. For

the purposes of validation, a Simulink PID model has been provided by A-Lab.

24

Figure 6. MLS Simulink diagram.

In addition to a PID controller, this diagram also contains a fractional order retuning

PID controller block, which can be used to tune the set point in such a way that the PID

controller output voltage would be more responsive. The figure below demonstrates this

well, the simulation was run with a static set point of 0.008 m.

For validation purposes, however, only the PID controller will be used. The internal

logic of the controller is shown below.

25

Figure 8. PID controller block internal diagram.

Figure 7. Ball position over time in PID and FOPID simulations.

Individual terms are split into separate blueprint-accessible C++ functions which follow

the internal diagram logic and are summarized thereafter.

4.1 Proportional Term

The proportional component of the PID controller consists of straightforward

multiplication of the set point deviation by the gain factor, however, this multiplication

takes place in the summation portion of the code for the sake of function transparency.

4.2 Integral Term

To calculate the integral, current set point deviation is multiplied by delta time – the

amount of time passed since the last integral calculation, the result is added to the

current integral value. The integral, prior to multiplication by the gain factor, is bound

via saturation between -1 and 1.

The integral calculation, and in fact all of the calculations within the simulation, are

performed each time a frame is rendered. The frequency of frame rendering can be

static or vary – in the case that it is varied, the Unreal Engine blueprint system provides

the time passed between the current frame and the previous one – delta time.

26

float P = setpoint_deviation;
return P;

Figure 9. “p_control” function code, it outputs proportional term value.

float addition = delta_time * setpoint_deviation;
float I = integral + addition;

if (I < -1) //internal saturation from -1 to 1
I = -1;

else if (I > 1)
I = 1;

return I;

Figure 10. “i_control” function code, it outputs integral term value.

In Matlab, the integrator block allows for internal signal saturation which limits the

range of values that the signal can be [14] , it caps the signal and keeps it from

exceeding the upper and lower saturation limits – the integral setup is shown below.

A blueprint variable is declared to represent the integral – it is external to the C++

function because the function calculates only the addition that is added to the integral,

27

Figure 12. Integrator block options.

Figure 11. PID delta_time variable assignment blueprint.

this variable is then fed into the function on each frame. Having relevant variables

declared within the blueprint and not the C++ code also allows for greater visibility of

the processes and reuse of those variables across different .

4.3 Derivative Term

To calculate the derivative, the change in the set point value must be visible throughout

the process. To accomplish this, a new blueprint variable – set point history is used.

Calculation of a derivative can involve several steps wherein it would be necessary to

introduce more variables to represent even more previous values, and there are different

ways to proceed with the calculation when using those. In this case, the algorithm is

simple and is concerned only with one previous value, as it is in the Simulink model.

Deviation history is equated to the outgoing derivative value from the function, when

the next frame is rendered and the derivative calculation function is called from the

28

Figure 14. Derivative components blueprint flow.

float D = (setpoint_deviation - setpoint_history) / delta_time;
return D;

Figure 13. “d_control” function code, it outputs derivative term value.

flow, ball position and set point deviation would already be altered, the previous set

point history is fed into the function to calculate the new derivative value. Upon

blueprint execution, the set point deviation history initial value is set to zero.

4.4 Term Summation

When all the terms have been calculated, they are first multiplied by their respective

gain factors and then summarized along with an offset signal of 0.38 – which is shown

in the Simulink diagram at the start of this chapter. Following the summation, the signal

goes through a saturation block. The gain block that is used thereafter has the gain

factor of 1 so it is not factored in the C++ function. The output of this summation

function is the voltage input signal that is used in the mathematical model.

29

Figure 16. PID gain factors initialization blueprint.

float voltage = P * Pk + I * Ik + D * Dk + offset;

if (voltage > 1) //output is saturated between 0 and 1
voltage = 1;

else if (voltage < 0)
voltage = 0;

//GEngine->AddOnScreenDebugMessage(-1, 0, FColor::Blue,
//FString::Printf(TEXT("\n coil voltage is %f"), voltage));

return voltage;

Figure 15. “set_voltage” function code, it outputs voltage value.

5 Network Interface Implementation

The purpose of building a network interface between Simulink and Unreal Engine is to

allow model validation : the necessary variables that represent the model inputs and

outputs are sent to Simulink wherein they can be compared with the existing model. If

the results are sufficiently divergent, the variables that govern the Unreal Engine MLS

are adjusted until the system resembles the Simulink model results.

To assist in this endeavour an existing solution can be utilized. This solution is

appropriated from a project that is titled : “Implementation of an Inverted Pendulum

Model in Virtual Reality”. It was a part of a Bachelor's thesis authored by Aleksandr

Kuzmin [15] from the same university as this project, the main purpose of this thesis

was to simulate the behaviour of an inverted pendulum in virtual reality wherein the

pre-existing mathematical model would be implemented wholly within Matlab Simulink

with Unreal Engine being used for the graphical representation of the system and virtual

reality interaction features.

5.1 Simulink Network Interface

The Simulink network interface would be an addition to the existing MLS diagram that

would receive variable data from UE allowing real-time comparison of system inputs

and outputs. The diagram would also allow to send variables to UE if is ever desirable

to have the Simulink model control the UE MLS.

The Simulink environment has pre-existing diagram blocks for UDP communication

protocol using defined UDP ports [16] . The configuration of this block within the

Simulink diagram used is shown in the figure below.

30

The important variables to consider are the local and remote UDP port numbers as well

as the remote address. One particular variable that should be noted is the sample time

which should correspond to the frame rate of the running UE simulation, for stability

purposes it is best to set the simulation to run at a fixed frame rate, this can be set in the

Unreal Engine project properties, engine general settings subcategory.

31

Figure 17. Packet Input block setup.

The frame rate of 100 frames per seconds corresponds to a sample time setting of 0.01

in the UDP packet input block. If the simulation frame rate does not correspond to the

Simulink sample rate, data will either be lost or supplemented by empty values which

reduces the accuracy of any reading. The block output data structure is inherited from

Aleksandr Kuzmin's project and remains unchanged.

To test whether or not the network functionality works – on the Windows platform it is

possible to view active computer connections via the CMD command : “netstat -a -o

-n”. The additional command parameters are there to help identify the process

responsible for an active connection – it will show the process identifier which can be

traced in the Task Manager details tab, as shown in the figure below.

32

Figure 19. Task Manager details.

Figure 18. Project frame rate settings in Unreal Engine.

An active UDP connection on port 9999 has been initiated by process 8864, which

corresponds to the PID of Matlab Simulink. The command should be entered while the

simulation is running, otherwise there would be no active UDP connection to trace.

33

Figure 20. CMD command “netstat -a -o -n” result.

5.2 Unreal Engine Network Interface

Building a network interface in Unreal Engine is more complicated than Simulink as

there aren't pre-existing assets to facilitate this sort of a connection. Standard C++ code

with network functionality dependencies is used to build independent functions that

create network sockets and blueprints initialize these functions when the simulation is

running. The relevant C++ code that was appropriated consists of following files :

1. Andmed.h

Contains declaration of a custom C++ data structure;

2. Iteraator.cpp and Iteraator.h

A counter;

3. Saatja.cpp and Saatja.h

Sends data to a network socket;

4. VastuVotja.cpp and VastuVotja.h

Receives data from a network socket.

“Andmed” is a custom data structure that contains relevant variable values, its' code was

left unaltered in this project and is shown in the figure below.

The structure should correspond to the block output data type that was specified in the

Simulink packet input and output blocks, it describes the inner construction of the sent

packet, the actual variables to be packed into it can be adjusted within the MLS blueprint

and within the Simulink diagram.

34

float float1 = 0.0f;

float float2 = 0.0f;

float float3 = 0.0f;

float float4 = 0.0f;

float float5 = 0.0f;

uint8 uint1 = 0;

uint8 uint2 = 0;

uint8 uint3 = 0;

Figure 21. “Andmed.h” structure variable declaration code portion.

Previously, C++ functions would have been called from a blueprint directly, in this

case, however, blueprint interfaces would be used. Blueprint interfaces are collections

of functions in name only [17] , they serve to expose functions and variables that are

present within a blueprint to be called by other blueprints.

The two specific blueprint interfaces : InvpDSendInterface and InvpDDeliverInterface

serve to expose the functions to send and receive data with relevant variables being

passed throughout. These are necessary because the network functionality blueprints are

segregated from the MLS blueprint, the interfaces are used for communication.

When the level is loaded, both of the network components are initialized from the level

blueprint using the provided values, the networking functionality can be then tested

when the simulation is running. Once the network interfaces work independently they

can be tested in conjunction – this will not be shown in this document.

35

Figure 22. Network components initialization blueprint.

6 System Validation

The purpose of validation is to confirm the built system functions as intended. The

adapted network interface allows for the data flow between the two software

environments. Before testing for the validity of the model itself, it is important to revisit

one of the previously unanswered questions : the coil current distance model.

6.1 Coil Current Acceleration Modifier Model Selection

Previously, there were two distance models proposed which determine the value of coil

current modifier. To decide which of the two distance models is more suitable, current

and voltage relationship must be observed – to do so the Simulink diagram is simulated.

36

Figure 23. Simulink diagram voltage and coil current characteristics.

Based on the figure above, there is a great similarity in the characteristics of voltage and

current with the difference being that of amplitude. Although it is difficult to see, at the

starting moment of the simulation, there is a very short spike of both voltage and current

towards their respective maximums : 1 V for voltage and 2.25 A for current.

The Unreal Engine model will be simulated next. The results are fed into Simulink. The

first distance model to be simulated would be the ascending model wherein the ball

position is calculated from the platform floor.

The similarity in characteristics is also observed within this simulation. At the

beginning of the simulation, voltage is quite erratic but coil current is incapable of

following such quick changes, it is also incapable of reaching its' maximum unless

voltage is consistently high, like in the latter portion of the simulation.

37

Figure 24. Unreal Engine MLS voltage and coil current characteristics.

The descending distance model is simulated next – ball position is calculated from the

platform ceiling. This distance model ensures that the current acceleration modifier is at

its' highest when the literal ball position is furthest from the ceiling.

Results are generally similar, but coil current is more responsive – it has managed to

reach its' maximum at simulation start. Because of this, this distance model would be

used for calculating coil current acceleration.

38

Figure 25. Voltage and coil current during simulation.

6.2 Unreal Engine Magnetic Levitation System Validation

Before beginning MLS validation, the first step would be to replicate the conditions of

the simulation in both environments – the relevant parameters for the Simulink model

are shown below.

The primary parameter of interest is the initial position of the ball, the Simulink diagram

is built to have the ball close to the top of the platform ceiling when simulation starts.

The figure below shows the results of simulation of both Simulink and Unreal Engine

MLS so that the results can be compared. Unreal Engine MLS is also simulated with the

starting ball position on the platform floor. The Simulink diagram, however, cannot be

simulated with this ball position – the diagram would not simulate properly.

39

Figure 26. MagLev Model block parameters.

In the figure above, Simulink results are in blue, UE MLS – in orange. This is the first

time the MLS is actually run and while the results are not great, they are not disastrous.

In the figure below, the UE MLS is simulated by itself with the starting ball position on

the platform floor.

40

Figure 27. Simulink and UE MLS simulation results.

The system response is quite slow and it can be seen in both figures that over an

extended period of time the ball position is slowly ascending.

To improve performance, there are several key variables that can be improved upon :

force modifier – which is simply used to increase the amount of force exerted upon the

41

Figure 28. UE MLS simulation results with different initial conditions.

ball for a given value of coil current which is in turn reliant upon voltage, and PID

controller gain factors – these will determine the amount of voltage generated

depending on how the set point deviation behaves.

After numerous experiments of changing the variables and measuring the results, an

acceptable model was found – the results are shown in the figure below.

42

Figure 29. Simulink and UE MLS simulation results after modification.

Once again, the Simulink model results are in blue, UE MLS – in orange. The time it

takes for the modified system to reach the set point is actually lower than the Simulink

model, albeit this comes at the cost of a more sensitive PID controller – this can be seen

by the voltage signal characteristic. The figure below demonstrates MLS performance

when the initial ball position is the platform floor.

43

Figure 30. UE modified MLS simulation results with different initial conditions.

In the modified UE MLS, the magnetic force applied was magnified by a factor of 8.

This is justified when looking at Simulink simulation results : the amount of current that

is necessary to generate enough attraction to hold the ball at a set point of 0.008 is much

less than the current the unmodified UE MLS was providing. In the following figures

that demonstrate the output of the modified system, it can be seen that the current and

voltage of Simulink and UE are much more similar. Further variables that were

modified were the PID gain factors : the proportional component gain factor was

changed from -39 to -120, the integral component gain factor was changed from -10 to

-30, the derivative component gain factor was changed from -2.05 to -4.

The change in the mentioned variables affects the degree of impact they can have upon

each other and the system output, however, the fundamental mathematical model that

describes the relationship between them remains unchanged.

As a short stress test, the system was subjected to a minor and major disturbances – the

figures below demonstrate the response.

44

Figure 31. Modified UE MLS response to a minor and major disturbance.

7 Virtual Reality Implementation

Introduction of virtual reality into this project would imply this : the operator can

observe and explore the level environment and interact with the physical objects and

processes within it. With implementation of VR, it is generally necessary to reduce

graphical fidelity or scene complexity to improve performance, but this would be

unnecessary in such a small project.

To assist in a timely completion of this task, similar to the network interface

implementation, the relevant blueprints can be migrated from Alexandr Kuzmin's

project, no C++ code is used this time due to Unreal Engine's native support for VR.

In Unreal Engine, various components responsible for individual functionality build

upon and attach to each other to provide features. Virtual reality in its' basic form is a

camera component – that which determines what the player sees, a motion controller

component – that which determines what the different buttons or manoeuvres with the

motion controllers actually do, and a player pawn component – the abstract object

within Unreal Engine which is controlled by the player or is the representation of the

player, as such – the motion control and camera components attach to the player pawn.

Once the blueprints components are migrated to the project and compiled they can be

tested, however, Unreal Engine requires for VR hardware to be connected and

operational for testing any such features. Because this project has been in development

in a remote location and with no access to Virtual Reality equipment – testing and

implementation will be conducted at a later date and will not be documented here.

45

8 Level Design

With all of the functional components built and tested, attention is diverted towards the

graphical component of the project, though there are also a few minor aspects related to

functional performance that will be discussed in this section.

The assets for building the visual component of the level were provided by A-lab. Once

placed, the components are easily arranged into the right order. The resulting level

environment is shown below.

One of the problems that arose with the imported assets is their incompatibility with

PhysX – specifically, the collision detection, the figure below demonstrates this.

46

Figure 32. Finished MLS level environment.

The imported asset is resting on a platform, the object is not suspended in air. Unreal

Engine's collision detection finds the outer exterior of the asset to be larger than it is.

This is not unique to the ball – all other assets suffer from the same problem. To correct

such a problem, native Unreal Engine assets can be used instead : these are basic shapes

that are included within the engine.

The ball asset is replaced with a basic sphere of the exact geometry and size which is

native to the engine. There is a slight visual difference, but the collision detection is

perfect and this is absolutely necessary for the sort of precise calculations performed

within the system on a relatively small scale.

47

Figure 33. Imported ball mesh resting on a platform.

The ball must interact with the MLS platform, which is the yellow apparatus that

actually imparts the magnetism. This platform is, however, an imported asset. To amend

this, basic columns are added into the level that will act as collision barriers. These

columns are carefully placed so that they align perfectly with the platform ceiling and

floor, the MLS platform itself has collision disabled so that it does not interfere with the

ball movement. At run-time, the columns are rendered invisible – this is shown below.

48

Figure 34. Collision columns during run-time and development.

9 Conclusion

At the current stage of the development, the project is available to be exported as a

functional application. However, it would be optimal to test VR features when the

opportunity arises. Further improvements can also be made to the control algorithm if

more data is available, for example : connecting the virtual system to the real magnetic

levitation system and performing experiments and stress tests to generate data for use in

additional validation.

One of the difficulties of such a project was the non-iterative process of development.

Whenever a piece of functionality was built – it was not possible to unit test the

working condition independently because it was inherently reliant on other components

to work properly. As a result, much of the functionality was only tested when the

project was near completion and the multitude of issues that arose were more difficult to

identify since there were several possible suspects. Migrating code and blueprint

components between different projects in Unreal Engine is also problematic if the

engine versions used in the projects are different, which they were.

The assets and components that were helpful in realizing this project were provided by

Alpha Control Laboratory [18] .

The primary objective of this project was to create a dynamic interactive magnetic

levitation system and this has been adequately accomplished.

49

References

[1] Vasily Ryzhonkov, “The rise of VR & AR era. Why this time is different?”, [Online].
Available: h ttps://www.slideshare.net/VRyzhonkov/the-rise-of-vr-ar-era-why-this-time-
is-different. [Accessed 10.01.2018].

[2] Official website for Epic Games, Inc., Unreal Engine, [Online]. Available:
https://www.unrealengine.com/en-US/what-is-unreal-engine-4. [Accessed 10.01.2018].

[3] Official website for Epic Games, Inc., Unreal Engine documentation, [Online]. Available:
https://docs.unrealengine.com/latest/INT/. [Accessed 10.01.2018].

[4] Official website for Epic Games, Inc., Unreal Engine documentation, “Setting Up Visual
Studio for UE4”, [Online]. Available:
https://docs.unrealengine.com/latest/INT/Programming/Development/VisualStudioSetup/
. [Accessed 10.01.2018].

[5] Official website for Microsoft Corporation, Visual Studio, [Online]. Available:
https://www.visualstudio.com/vs/community/. [Accessed 10.01.2018].

[6] Official website for Epic Games, Inc., Unreal Engine documentation, “Blueprints Visual
Scripting”, [Online]. Available:
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/ [Accessed 10.01.2018].

[7] Official website for BigLevel Software, “Model-Driven Development and Product Line
Engineering”, [Online]. Available: http://www.biglever.com/technotes/mdd_spl.html.
[Accessed 10.01.2018].

[8] Official website for Epic Games, Inc., Unreal Engine documentation, “Physics
Simulation”, [Online]. Available:
https://docs.unrealengine.com/latest/INT/Engine/Physics/. [Accessed 10.01.2018].

[9] Official website for The Math Works, Inc., Matlab Documentation, [Online]. Available:
https://www.mathworks.com/help/matlab/. [Accessed 10.01.2018].

[10] Official website for The Math Works, Inc., Simulink Documentation, [Online].
Available: https://www.mathworks.com/help/simulink/. [Accessed 10.01.2018].

[11] Tepljakov A., E. Petlenkov, J. Belikov, E. A. Gonzalez, “Design of retuning fractional
PID controllers for a closed-loop magnetic levitation control system”, [Online].
Available: https://a-lab.ee/research/publications/228. [Accessed 10.01.2018].

[12] Official website for Epic Games, Inc., Unreal Engine documentation, “Add Radial
Force”, [Online]. Available:
https://docs.unrealengine.com/latest/INT/BlueprintAPI/Physics/AddRadialForce/.
[Accessed 10.01.2018].

[13] Wikimedia Foundation, Inc., “PID controller”, [Online]. Available:
https://en.wikipedia.org/wiki/PID_controller. [Accessed 10.01.2018].

50

http://www.biglever.com/technotes/mdd_spl.html
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/
https://www.visualstudio.com/vs/community/
https://docs.unrealengine.com/latest/INT/Programming/Development/VisualStudioSetup/
https://docs.unrealengine.com/latest/INT/Programming/Development/VisualStudioSetup/
https://docs.unrealengine.com/latest/INT/
https://www.unrealengine.com/en-US/what-is-unreal-engine-4

[14] Official website for The Math Works, Inc., Documentation, “Saturation”, [Online].
Available: https://uk.mathworks.com/help/simulink/slref/saturation.html. [Accessed
10.01.2018].

[15] Aleksandr Kuzmin, “Implementation of an Inverted Pendulum Model in Virtual Reality”,
[Online]. Available: http://a-lab.ee/edu/theses/defended/1239. [Accessed 10.01.2018].

[16] Official website for The Math Works, Inc., Documentation, “Packet Input/Output”,
[Online]. Available: https://uk.mathworks.com/help/sldrt/examples/packet-input-
output.html. [Accessed 10.01.2018].

[17] Official website for Epic Games, Inc., Unreal Engine documentation, “Blueprint
Interface”, [Online]. Available:
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/Types/Interface/.
[Accessed 10.01.2018].

[18] Official website for Alpha Control Lab, [Online]. Available: https://a-lab.ee/. [Accessed
10.01.2018].

51

	1 Introduction 11
	2 Project Overview 12
	2.1 Project Objectives 12
	2.2 Completion Strategy 12
	2.3 Unreal Engine Overview 13
	2.4 Matlab & Simulink Overview 14

	3 Mathematical Model Implementation 15
	3.1 Velocity Acceleration Implementation 17
	3.2 Coil Current Acceleration Implementation 20

	4 PID Controller Implementation 24
	4.1 Proportional Term 26
	4.2 Integral Term 26
	4.3 Derivative Term 28
	4.4 Term Summation 29

	5 Network Interface Implementation 30
	5.1 Simulink Network Interface 30
	5.2 Unreal Engine Network Interface 34

	6 System Validation 36
	6.1 Coil Current Acceleration Modifier Model Selection 36
	6.2 Unreal Engine Magnetic Levitation System Validation 39

	7 Virtual Reality Implementation 45
	8 Level Design 46
	9 Conclusion 49
	References 50
	1 Introduction
	2 Project Overview
	2.1 Project Objectives
	2.2 Completion Strategy
	2.3 Unreal Engine Overview
	2.3.1 Code Compiler
	2.3.2 Blueprint Visual Scripting System
	2.3.3 Physics Simulation

	2.4 Matlab & Simulink Overview

	3 Mathematical Model Implementation
	3.1 Velocity Acceleration Implementation
	3.2 Coil Current Acceleration Implementation

	4 PID Controller Implementation
	4.1 Proportional Term
	4.2 Integral Term
	4.3 Derivative Term
	4.4 Term Summation

	5 Network Interface Implementation
	5.1 Simulink Network Interface
	5.2 Unreal Engine Network Interface

	6 System Validation
	6.1 Coil Current Acceleration Modifier Model Selection
	6.2 Unreal Engine Magnetic Levitation System Validation

	7 Virtual Reality Implementation
	8 Level Design
	9 Conclusion
	References

