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Abstract

With the emergence of Big Data, handling incomplete data sets has also become an inter-

est area. This is especially true in the areas of human provided data. One way to deal with

such data sets that includes incomplete input data is to create a smaller, complete subset

of the input data, but this approach comes with its own disadvantages.

The aim of thesis is to provide a novel algorithm for training neural networks with incom-

plete input data sets.

The proposed method uses masking of weights in order to partially train the network,

depending on the available input. In effect, this enables updating only the weights related

to the available input.

The experimental results show that this method could be viable approach when dealing

with less than 3-5% missing data.

This thesis is written in English and is 57 pages long, including 7 chapters, 12 figures and

11 tables.
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Abstract
Uus algoritm tehisnärvivõrkude treenimiseks puudulike andmete

peal

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 57 leheküljel, 7 peatükki, 12

joonist, 11 tabelit.
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1 Introduction

1.1 Problem definition

Human provided data often comes with its unique data-related issues, since humans tend

to provide imperfect data.

This kind of data can be complex and missing columns could be related to structure of the

process that produced said data. For example, a dataset provided by a U.S.A based loan

company [1] has information about each loan they provided to their customers. The loans

are made jointly or by a single person. So for loans made by single person, data columns

related to joint applications would be irrelevant, therefore missing.

To give another example, in surveys, respondents might refuse to answer certain ques-

tions. Or questions could be irrelevant to them [18] (questions about quality of marriage

for unmarried people).

And in some cases, the reason for missing data depends on the dataset itself. (The mech-

anisms of missing data is discussed further in Chapter 4)

Cases of missing data are often encountered in areas of medical trials, social science

studies and surveys, and financial industry.

With the emergence of Big Data, the amount of data we can access is increasing fast, but

often the data can be imperfect. There are traditional ways to handle this issue (imputation

and marginalisation for example) but they come with their own disadvantages and require

extra steps of data manipulation [17].

It is, for this reason, important to be able to train neural networks with imperfect data or

varying amount of data.
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1.2 Goal

The aim of the thesis is to propose a novel algorithm for training neural networks with

imperfect data. It should be noted that even though gross errors and noise are also cate-

gorized under imperfect data problem, the focus of the thesis is on the varying amount

of input and missing data.

The proposed method/algorithm involves partially training neural networks depending

on the completeness of the input vectors. This is achieved by training only the weights

related to the existing input data with a method of masking the weight matrices.

However, due to the nature of the task, the thesis also includes theoretical and practical

information in training and implementation of neural network in Python language, as well

a brief look at libraries used or considered.

1.3 Methodology

The metholody I will follow involves laying the fundamentals of the problem with theoret-

ical information. Following that, I will form a proof of concept for the proposed method,

which includes implementations using relatively simple datasets.

Finally, I will conclude with the conclusion of those different implementations.
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2 Python

This chapter includes a brief introduction to Python language and the libraries used for

the implementations provided in the thesis, and why Python was chosen for the task.

2.1 Language

Python is a high-level scripting language and it supports several programming paradigms.

This makes the language a very flexible tool for many different application areas. Another

advantage of Python language is that it has a very clear, almost pseudocode-like syntax,

making it easier to read and understand.

It offers an extensive list of third-party libraries (roughly 100.000) and it is a widely used

tool in scientific programming. For my thesis, I have only included information about the

libraries I used for the tasks described in the following chapters.

2.2 Fundamental libraries

Below can be found a list of fundamental libraries used in the thesis.

2.2.1 Numpy

Numpy is the fundamental scientific library in Python programming language [2]. It is

used by many other scientific libraries. And it’s mainly a tool for manipulating and using

n-dimensional arrays. In some ways, it can be compared to Matlab, but there are some

differences that might be important to notice for Matlab users.

• Basic type in Numpy is a multi-dimensional array and operations on these arrays

are always element-wise.

• 0-based index is used.

• Being implemented in Python, it can be used for full-fledged applications easily.

• Arrays are pass-by-references, in contrast to Matlab’s arrays working on pass-by-
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value semantics.

Also, Numpy’s masking features (which will be discussed in following chapters) was very

important during the implementation of the proposed method. It allowed masking certain

weights of the neural network.

2.3 Pandas

Pandas is an open-source library that offers data analysis tools for the Python program-

ming language [3]. It aims to offer a single tool that bridges data preparations and analy-

sis, mainly as an alternative to domain-specific language like R.

Some important features can be summarized below:

• Reading and writing data between many different formats.

• Reshaping and pivoting data sets.

• Intelligents tools to slice and subset datasets.

• High performance.

Below can be seen a few simple examples for library usage.

2.4 Neural network libraries

Below can be found a list of neural network related libraries that were considered for the

thesis. However a more Numpy-based approach and implementation of neural network

training were used in the proof of concept.

2.4.1 Tensorflow

Developed by Google’s Machine Intelligence research organization, Tensorflow focuses

on numerical computations using data flow graphs. Although built mainly for machine

learning and deep neural network tasks, the library is suitable for other tasks as well.

It’s a performant system that can work across many machines in a cluster and it can use
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both CPU and GPU, as well as custom designed ASICs systems. It is used in many

Google service and by over 15 teams in Google [5].

Main unit of data in Tensorflow is a tensor, which is a set of values shaped as multi-

dimensional arrays.

2.4.2 Keras

Keras is a high-level API for deep learning. It is built around Theanos and Tensorflow

backends. It’s possible to choose either backend by configuration. It offers a fast tool to

experiment on data or with different neural network structures [6].

Like Tensorflow, it can run CPU or GPU, supporting both convolutional recurrent net-

works.

For my purposes in the thesis, Keras was only used as a benchmark tool, to offer a starting

point for match rates for the proposed solution.

2.5 Why Python?

Python offers a productive development environment with high-class libraries in scientific

computing area. It’s also open-source, meaning it can be used without licensing issues

and the direction of the language and libraries are often decided by the actual user-needs.

However the main reason for choosing Python was the Numpy library and its masking

feature. This single-handedly allowed to build the proof of concept with a simple imple-

mentation of masking of certain parts of the weights.

I believe this is done mostly thanks to the pass-by-reference nature of arrays in Python,

which enables in place (in memory) changes of subsets of arrays without making new ar-

rays. When compared to Matlab’s pass-by-value approach to arrays, this was very useful.

Another great advantage is the flexibility the language offers in terms of programming

styles and libraries.
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3 Neural Networks

Neural networks are computational models used in approximation, classification, control

and other similar tasks. They are assemblies of simpler processing elements known as

neurons or nodes and the connections those elements make.

Neurons’ functionalities are loosely based on how biological neurons works. And the

weights representing the connections these neurons make store the network’s ability to

process information.

3.1 Biological model

As mentioned before, artificial neurons are loosely based on how biological neurons work.

For this reason, taking a brief look at the biological model can help us understand their

structure better. However, considering the complexity of biological structure of brain and

neurons, only a brief look at the subject is included in the section.

An important distinction differing neurons from other cells is their ability to function as

signal processing devices [12]. This signal processing happens through negatively and

positively charged ions, and neuron membrane’s properties.

In Figure3.1, a general structure of biological neuron can be seen.
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Figure 3.1: Structure of biological neuron

Neurons are connected to other neurons through their synapses, and form a network for

data processing. Each neuron can connect to many thousands of other neurons through

synapses, and they communicate via short-lived electrical signals, impulses, in the voltage

of their membrane.

In general, inputs to a neuron are summed up as membrane potential and if this potential

is over a certain threshold the neuron is excited. Neurons can be excited or inhibited. This

simplified model basically gives us an idea how a Threshold Logic Unit (TLU) works.

A neural network is formed of such simplified versions of biological neurons, are capable

of making approximation thanks to their ability to train using given data.

3.2 Networks

3.2.1 Neurons and Threshold Logic Unit

The basic building block of a neural network is a neuron. Taking a look at a TLU can give

us a clear understanding of how these basic building blocks work.
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A TLU is a neuron that excites when a certain threshold is reached after processing its

inputs. This threshold is also known as bias. In general, below is a representation of how

TLU works.

Figure 3.2: Threshold logic unit

Following this example, weighted sum of inputs is known as activation (eq:3.1). The

output of the neuron depends on the bias (θ ), weights, inputs and the activation function

(a step function in this case).

a =
n

∑
i=1

(WiXi) (3.1)

y = F(W,θ ,X ,a f ) (3.2)

3.2.2 Activation functions

The primary reason for using activation functions is to introduce non-linearity to the net-

work [13]. This enables the network learn non-linear functions. These functions also

affect how informations flows through the layers of a network. This means they should

be chosen according to the task.
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The most common functions used are hyperbolic tangent (eq. 3.3) and sigmoid functions

(eq. 3.4).

f (x) =
e2x−1
e2x +1

(3.3)

f (x) =
1

1+ e−x (3.4)

In addition to these two functions, other functions can be used according to the task.

For example, softmax function is a good choice for tasks similar to digit recognition,

where the output size is bigger than 1. Softmax allows creating a vector of real values

in the range of (0,1) that add up to 1. In other words, it creates an output of vector of

probabilities that add up to 1.

For the proof of concept implementation, mainly linear, sigmoid and softmax functions

were used.

3.2.3 Layers

Layers form the next level of basic structure after nodes. Each layer is a collection of

nodes. The amount of layers in a network vary largely depending on the problem and

network structure. However there are 3 specific and important layer types.

• Input layer: The size of this layer depends on the input data.

• Output layer: Likewise, the size of output layer depends on the the task and the

output in the dataset. For example, for a digit recognition task, output layer would

have 10 nodes, each representing a digit.

• Hidden layer: Number of layers and layer sizes in hidden layer depends on the

problem, network structure and performance considerations.
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Figure 3.3: Neurol network layers

3.3 Types of neural networks

Types of neural network can be varied depending on their structure, node connections and

training methods. However a simple way to classify neural networks can be by structure

and training.

3.3.1 Networks by structure

Feedforward networks:

The defining characteristic of feedforward networks is that the information moves in only

one directions, from one layer to the next, starting at input layer and ending at output layer

[14]. There are no connections among the nodes in the same layer of nodes, also there are

no cycles or loops in the networkç

A node in a layer connects to all the other nodes in the next layer. This enables to the

information to flow forward through the network without any feedback structure.

They are very commonly used for classification tasks, and for the proof of concept net-

work written for this thesis also uses such a network structure.
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Feedback networks:

In contrast to the feedforward networks, the flow of data can bi-directional [14] with the

introduction of loops and cycles. These networks are also known as recurrent networks,

and the feedback mechanism can be internal or external.

Figure 3.4: A recurrent network structure

3.3.2 Networks by learning

It is also possible to classify neural networks by training methodologies used [14].

Supervised learning:

In supervised training, the network is trained by providing it with input and the matching

output for that given input.

Reinforcement learning:

In this kind of learning, after processing of a sequence the network receives a value that

defines if the results correct or not. Also, this value may include how correct or wrong the
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result is. In a sense, the network receives punishment or reward [15].

Unsupervised learning:

In this type of training, the network is supposed to discover features of the input popula-

tion, rather than being provided with set of categories. Only the inputs are given, and the

output unit is trained to clusters of patterns in the input population.

3.4 Training

This subsection mainly involves training of feedforward networks with supervised learn-

ing, due to their use in the thesis. However a brief section on training in supervised

learning method can be found at the end as well.

In supervised learning, a neural network gives us a model derived from our dataset,

which includes both inputs and their respective outputs. During the training, weights of

the neural network are updated according to the error in each iteration of the training.

During the training, the output of the network is compared to the actual output for the

given input. This comparison gives us an error function. The objective of the training is

to minimize this error function. So in a sense, training a network is a task of optimization

of the global error of the neural network.

3.4.1 Cost function

Cost function or the error function is the representation of how well a network performs.

And it depends on weights and biases of the network.

C = f (W,θ) (3.5)

Although the Mean Square Error is the most common functions used for calculating er-

rors. There are several cost functions used in the neural networks [13].
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Mean Square Error (MSE):

For i (ideal output) and a (actual output), MSE can be described as:

MSE =
1
n

n

∑
i=1

(i−a)2 (3.6)

The square of the linear error negates the effect of some errors being negative while others

positive. It’s usually the most commonly used cost function in neural networks.

Sum of Squares Error:

In contrast to MSE, this function doesn’t give the error in percentage. The result is a total

of errors, meaning that SSE will get higher for more severe errors.

SSE =
1
2 ∑

p
(i−a)2 (3.7)

Algorithms like Levenberg Marquardt requires the use of SSE [13, pg 25].

Root Mean Square (RMS):

RMS =

√
1
n

n

∑
i=1

(i−a)2 (3.8)

Although similar to MSE, RMS will always provide a higher error value. However this

functions is rarely used in neural networks.

3.4.2 Optimization

During the training, we aim to minimize cost function. This is done through optimization

methods. One popular way to do this task is using gradient descent optimization. Gradi-

ent descent methods are often used when we want minimize or maximize n-dimensional

functions.
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Figure 3.5: Gradient descent on 2-dimensional function

A gradient is a vector defined for any differentiable point on a function. It points from this

point on function towards the steepest descent. So gradient descent is a means of taking

steps in the directions that does most to decrease the given function. Derivatives are used

to take small steps to make the cost function smaller.

To give an example, for a cost function C of two variables, making small changes to those

variables would result in small changes in C itself.

∆C(v1,v2)≡
δC
δv1

∆v1 +
δC
δv2

∆v2 (3.9)

∆v =

 ∆v1

∆v2

 , ∇C =

 δC
δv1

δC
δv2

 (3.10)

And the amount of steps and direction we need to take to make C smaller can be calculated

with the following formula, where η is the learning rate and a positive value.

∆v =−η∇C (3.11)

However, initial starting point could put the gradient descent near a local minimum, and

for this reason it’s considered a good idea to train the network with different starting

points. And limitations of gradient descent should be considered when gradient descent

based methods are used for training.
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3.4.3 Backpropagation

Backpropagation is a training method that uses gradient descent. Since it requires desired

outputs, it’s more often a supervised learning tool. During the training neurons send their

signals forward, as the information flows through the network, and then the errors are

propogated.

The backpropagation can be done in two different approaches: online training and batch

training.

In online training, gradients are calculated and applied to weights after each training set.

In contrast, in the batch training approach batches of training data are taken. Gradients

are summed for each training set in the batch, and only after that the summed gradient

applied to the weights of the network.

Batch training is often the preferable method due performance consideration and difficulty

of implementing online training in a multi-threaded manner [13].

3.5 Applications

Neural networks have been used in several areas in classification and regression tasks.

Below can be found some areas where they have been used [14].

• Identifying tax fraud cases

• Financial predictions

• Economic forecasts

• Loan approvals and credit scoring

• Consumer spending classification

• Image recognition
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4 Missing Data

This chapter mainly deals with several methods to handle missing data in neural network

tasks, finally concluding with a section on the proposed method as part of the thesis.

There are three types of mechanisms that lead to missing data [9, pg 13].

• MCAR - Missing Completely at Random: It should be noted that randomness

doesn’t mean that pattern of missing data is random, but that the missing data does

not depend on data values. In other words, the probability of missing value for a

variable doesn’t depend on the variable itself.

• MAR - Missing at Random: MAR is a case of probability of missing data on a

certain variable X depending on other variables but not the variable X itself.

• MNAR - Missing not at Random: In MNAR, missing data in X is related to the

value of X.

Depending on the mechanism of missing data, different traditional methods are used to

handle missing data cases.

4.1 Traditional methods

4.1.1 Imputation

Imputation methods replaces missing data in the dataset with approximated values cal-

culated by using several statistical methods. These methods draw predictions from the

distribution of missing data and rely on methods that can create those predictive models

using the observed, available data.

These models can be explicit or implicit models. Some models are listed below [7]:

• Average and median: Average or median of observed values are used to replace

missing data.

17



• Random: Missing values are filled with random values of the missing attribute in

available data.

• k nearest neighbors method: This method uses k most similar samples to fill the

missing data.

• Neural networks and fuzzy systems

The main disadvantage of this method is the likelihood of creating bias in the data.

4.1.2 Marginalisation

Marginalisation is a reduction method, where missing data is removed from the dataset.

Some used methods are listed below:

• List-wise deletion: rows that contain missing data are removed from the dataset.

• Attribute deletion: columns (attributes) that contain missing data are removed.

Main disadvantage of marginalisation methods is the possible loss of crucial data from

the dataset.

4.2 Other methods

This section mostly deals with using neural networks with missing data. For this reason,

the subsection 4.2.1 is mentioned here, even though it can be classified as imputation.

4.2.1 Using neural networks to complete the dataset

A combination a genetic algorithms and neural networks can be used to complete missing

data [10]. In such a model, the error (4.1) can be calculated with representation of the

input with unknown and known parts.

e =


−→
Xk
−→
Xu

− f


−→
Xk
−→
Xu

 ,
−→
W

2

(4.1)
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And to approximate the missing values, the above equation is minimized using genetic

algorithm, or other traditional optimization methods. But for the referred study [10], GA

was preferred because it offered a better probability to find global optimums.

After experimenting with different amount of missing values in single records, the pro-

posed method were found to be approximating with great accuracy [10, Conclusion].

4.2.2 Using neural networks based on rough set theory

Another neural network based approach could be using rough neural networks. These

kind of networks work by implementing rough sets. The advantage this kind of networks

bring is the ability to process imperfect data in the form of intervals or simply missing

data [7]. And this enables the network to give imprecise answers when imperfect data

exists.

Traditional methods of handling missing data via data preprocessing come with their own

disadvantages, such as loss of crucial data or creating bias in the dataset. Machine learning

systems that can directly work with missing data can be a good solution for such cases.

Rough sets:

Rough sets are fundamentally an approach to handling imperfect data and knowledge [8].

In traditional set theory, sets are crisp, in the sense that each element of such a set should

be able to classified as belonging to the set or not. Rough sets theory take a step away

from this approach to be able to address vagueness in data.

Fuzzy sets also deal with such vagueness, but they incorporate this vagueness by allowing

each element to belong to a set to a certain degree. (0 < k < 1) In contrast, rough sets uses

pair of sets for lower and upper approximation of the original set. Those lower and upper

sets can be crisp sets or fuzzy sets.
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Rough neural networks:

The proposed architecture in the rough neural network paper [7] has input and output

values represented as intervals, while the weights are still scalar as in classic neural net-

works.

To be able to process such inputs, each layer in the network consists of two subsets of

neuron related to the intervals in the input and output. Although these two subsets share

their weights, their inputs are mapped to their respective interval.

Experiments using this method proved that rough sets are resistant to a certain degree of

missing data, and when the amount of missing data is too high it will result in unresolved

classification rather than misclassification [7, Conclusion].

4.3 Proposed method

The proposed method used in this thesis work in a similar way to using a dropout method

in neural networks. In the dropout method, certain neurons are dropped out of the net-

work depending on a given probability, to prevent over-training. This decreases the inter-

dependency of neighboring neurons [19].

The proposed method is similar in the sense that it achieves a partial training for inputs

with missing values. It is offered as a way of training neural networks with imperfect

data.
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4.3.1 Theory

Figure 4.1: Basic neural network structure

When the neural network processes a complete input, the weights are updated as accord-

ing the training method. As it can be seen from the above image, the weights between the

input and hidden layer can be represented in the following matrix.


w11 w21 w31

w12 w22 w32

w13 w23 w33

 (4.2)

In this matrix, each column represents an input element’s connections to the next layer.

So w31 is the weight connecting the 3rd input to the 1st neuron in the hidden layer.

In the proposed method, only the weights relevant to the existing input are used in the

training process. This is done using a masking feature provided by the NumPy library of

Python. Effectively, masked away weights are dropped out of the training process.

So for an imperfect input of [1, 2, nan]:
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Figure 4.2: Missing data

Weights related to the 3rd input will be masked away and a subset of the weights will be

used by the training algorithm.


w11 w21 −

w12 w22 −

w13 w23 −

 (4.3)

More details about the method and the algorithm is given in the next chapter (5), using

one simple dataset and another more complex one. Finally in the Implementation chapter

(??), the method is applied on a real-life application of credit scoring.
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5 Proof of Concept

This chapters includes details about the proof of concept developed and tested on two

seperate datasets. Although results for both datasets are represented, the explanations are

done using an simpler NN model.

However before delving into explanations, a detailed look into the masking and NaN (not

a number) features of the Numpy library is needed.

5.1 Masking and NaN

5.1.1 NaN

Numpy library offers a custom object call NaN number that can be implemented in the

arrays. This NaN object is usually created when missing or non-number values are read

from a file. The advantage it offers is that, this object acts in a special and expected way

when fed into calculations.

As expected, calculations including a NaN object returns NaN results. This becomes even

more evident in matrix calculations.

1 # I m p o r t i n g t h e l i b r a r y .

2 i m p o r t numpy as np

3

4 3 ∗ np . nan # Outpu t : nan

5 3 + np . nan # Outpu t : nan

Listing 5.1: NaN values

This becomes even more evident in matrix calculations. A and B matrices and their

representations in Python could be seen below.

A =


1 2 1

1 0 1

0 1 1

 , B =
[

1 2 nan
]

(5.1)

23



1 A = np . a r r a y ( [ [ 1 , 2 , 1 ] , [ 1 , 0 , 1 ] , [ 0 , 1 , 1 ] ] )

2 B = np . a r r a y ( [ 1 , 2 , np . nan ] )

3 np . d o t (A, B) # Outpu t : [ nan , nan , nan ]

Listing 5.2: NaN values in matrices

The reason this is a simple but important detail is that, in the datasets missing values are

represented by NaN, and when an imperfect input fed into a NN model, the NaN value

spread through the network and show up in the output.

This proved to be a simple way to check if missing values were properly masked away in

the process.

5.1.2 Masking

Masking feature of Numpy works in the following way.

First step is to create an array of binary values that represents the structure of the matrix

to be masked. In this new matrix 1 represents the elements to masked, and 0 for elements

to be used.

For example, for matrix A, if we want to mask the first column and do an operation on

the last two, we can do as follows:

A =

 1 1 1

1 1 1

 , Amask =

 1 0 0

1 0 0

 (5.2)

1 A = np . a r r a y ( [ [ 1 , 1 , 1 ] , [ 1 , 1 , 1 ] ] )

2 # A[ 0 ] = [ 1 , 1 , 1 ] , f i r s t row .

3 # A[ 0 ] [ 0 ] = 1 , f i r s t row , f i r s t e l e m e n t

4

5 m a s k _ p a t t e r n = [ [ 1 , 0 , 0 ] , [ 1 , 0 , 0 ] ]

6

7 masked_A = np . ma . a r r a y (A, mask= p a t t e r n )

8 # [ [ masked , 1 , 1 ] , [ masked , 1 , 1 ] ]

9

10 masked_A = masked_A ∗ 3

11 # [ [ masked , 3 , 3 ] , [ masked , 3 , 3 ] ]
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12

13 # Unmasking

14 masked_A = np . a r r a y ( masked_A ) # new a r r a y

15 # Outpu t : [ [ 1 , 3 , 3 ] , [ 1 , 3 , 3 ] ]

Listing 5.3: Masking example

Unmasking and compressing:

There are two different ways to removing a mask from an array, and each had its use

different parts of the algoritm.

Unmasking (creating a new array with masks removed), as seen below, returns an array

with original dimensions. This part was useful during the training part.

Differently, compressing returns an array with compressed dimensions. Compressing was

used in feed forward processing of input values.

1 # f o r A = [ [ masked , 3 , 3 ] , [ masked , 3 , 3 ] ]

2 compressed_A = np . ma . c o m p r e s s _ c o l s ( masked_A )

3

4 # Outpu t : [ [ 3 , 3 ] , [ 3 , 3 ] ]

Listing 5.4: Compressing example

5.2 Feed forward processing

Masking features of Numpy was used in the feed forward processing on input (predicting).

The main problem here is to prevent NaN values spreading through the calculations.

In a normal case, activation of layers are calculated as follows:

ak = f (w.ak−1 +b) (5.3)

1 # In Python , i t can r e p r e s e n t e d as below

2 # where s igmoid i s t h e a c t i v a t i o n f u n c t i o n

3 # of t h e l a y e r .

4 a = t . s igmoid ( np . d o t (w, a ) + b )
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In the case of missing value in an input, the weight matrix connecting input layer to

the hidden layer and input itself are masked and compressed, as explained in a previous

section 5.1.2.

1 # A c t i v a t i o n o f h id de n l a y e r .

2

3 # Masking f o r i n p u t and w e i g h t s .

4 h _ p a t t e r n = t . c r e a t e _ w e i g h t _ m a s k ( x )

5 h_mask = [ h _ p a t t e r n f o r i i n r a n g e ( l e n ( s e l f . w e i g h t s [ 0 ] ) ) ]

6

7 # Masked and compressed i n p u t s and w e i g h t s .

8 masked_w = np . ma . a r r a y ( s e l f . w e i g h t s [ 0 ] , mask=h_mask )

9 masked_a = np . ma . a r r a y ( x , mask= h _ p a t t e r n )

10 c_w = np . ma . c o m p r e s s _ c o l s ( masked_w )

11 c_a = np . ma . compress_rows ( masked_a )

12

13 a = t . s igmoid ( np . d o t ( c_w , c_a ) + s e l f . b i a s e s [ 0 ] )

In a NN model with hidden layer of 4 nodes and input layer of 3 nodes, a partial calcu-

lation would look similar to the below equation. However, if the last element in input is

missing ([1, 1, nan] for example), the bold parts of the matrices would be ignore in this

part of calculation due to masking and compressing.

a = f




w11 w21 w31

w12 w22 w32

w13 w23 w33

w14 w24 w34

x


a1

a2

a3

+


b1

b2

b3

b4



 (5.4)

5.3 Training

Training algoritm is applied by two seperate functions. Training data is shuffled, to make

sure each training epoch is unique, afterwards, for each input vector update_weights

method is called.

1 f o r d a t a i n t r a i n i n g _ d a t a :

2 # Weights and b i a s e s a r e u p d a t e d a c c o r d i n g t o t h e g r a d i e n t d e s c e n t

c a l c u l a t e d
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3 # on each i n p u t and o u t p u t p a i r .

4 s e l f . _ _ u p d a t e _ w e i g h t s ( da t a , e t a )

5 # s e l f r e f e r s t o t h e ne twork model .

In general, update_weights method calculates gradients using a backpropogation method

and updates the weights accordingly.

−→w =−→w −α
−→
∇C (5.5)

5.3.1 Method: update_weights

The aim of this method is to update weights with the calculated gradients received from

the backpropogation method. With an input without missing values, weights are simply

update as follows.

1 # G r a d i e n t c a l c u l a t i o n

2 nab la_b , nabla_w = s e l f . _ _ b a c k p r o p o g a t i o n ( x , y )

3

4 # Weights and b i a s u p d a t e .

5 s e l f . w e i g h t s = [w − ( e t a ∗ nw ) f o r w, nw i n z i p ( s e l f . we igh t s , nabla_w ) ]

6 s e l f . b i a s e s = [ b − ( e t a ∗ nb ) f o r b , nb i n z i p ( s e l f . b i a s e s , n a b l a _ b ) ]

But with an imperfect method, this simple calculation cannot be used because, the output

of backpropogation method includes NaN values, due to way the backward propogation

was implemented, which will be explained in the next sub-section. But for now, following

matrix can represent the gradient calculation result for the weights connecting the input

to the hidden layer.

1 # G r a d i e n t c a l c u l a t i o n r e s u l t o f h i dde n l a y e r w e i g h t s .

2 # For an i n p u t w i th l a s t e l e m e n t m i s s i n g :

3 # [ 2 1 0 , 120 , nan ]

4 [ [ 0 .0072174 0 .0068817 nan ]

5 [ 0 .00523259 0 .00498921 nan ]

6 [−0.0063878 −0.00609069 nan ]

7 [−0.00178148 −0.00169862 nan ]

8 [ 0 .00932666 0 .00889287 nan ]

9 [−0.00095003 −0.00090584 nan ]
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10 [ 0 .00151193 0 .00144161 nan ]

11 [−0.00074261 −0.00070807 nan ]

12 [ 0 .00414442 0 .00395166 nan ]

13 [ 0 .00458916 0 .00437571 nan ] ]

This requires implementing masking during the weight update process. (It should be

noted that, I discovered later that it’s possible to replace nan values with 0 in this stage

and simplify this process. Small details like this could be fixed in a later stage if further

optimization is needed.)

At this point, the method creates empty arrays with the shape of weights and biases,

and calculated gradients are add to these arrays accordingly. But before addition, small

masking operation needs to be done, to update only weights relevant to the input values.

As explained in a previous section (5.1), masking pattern is created using the input and

the shape of weight matrix.

1 # C r e a t i n g t h e mask

2 h _ p a t t e r n = t . c r e a t e _ w e i g h t _ m a s k ( x )

3 h_mask = [ h _ p a t t e r n f o r i i n r a n g e ( l e n ( nabla_w [ 0 ] ) ) ]

4

5 # Masked h id de n l a y e r w e i g h t s .

6 masked_hw = np . ma . a r r a y ( nabla_w [ 0 ] , mask=h_mask )

7

8 # Upda t ing and unmasking .

9 # nabla_w i s an z e r o s a r r a y c r e a t e d i n t h e shape

10 # w e i g h t s o f t h e ne twork model . And d e l t a _ n a b l a _ w

11 # i s one o f t h e o u t p u t s o f b a c k p r o p o g a t i o n method .

12 masked_hw += d e l t a _ n a b l a _ w [ 0 ]

13 nabla_w [ 0 ] = np . a r r a y ( masked_hw )

5.3.2 Method: backpropogation

This method calculates the gradients which will be used in weight update part of the

training, as explained in the above sub-section.

In normal operation, where the input is not imperfect, arrays with the shapes of weights

and biases are created.

1 # Empty m a t r i c e s wi th b i a s s h a p e s / s i z e s .
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2 n a b l a _ b = [ np . z e r o s ( b . shape ) f o r b i n s e l f . b i a s e s ]

3 nabla_w = [ np . z e r o s (w. shape ) f o r w i n s e l f . w e i g h t s ]

In the forward phase, activations of layers and z-values are kept in seperate lists. It should

be noted that the input is considered as the first activation. This, as it will be seen later, is

the reason why the gradient calculated by the method includes NaN values.

1 a c t i v a t i o n s = [ x ] # x : i n p u t

2 zs = [ ]

3

4 # Empty m a t r i c e s wi th b i a s s h a p e s / s i z e s .

5 z = np . d o t (w, a c t i v a t i o n ) + b

6 zs . append ( z )

7

8 # New a c t i v a t i o n .

9 a c t i v a t i o n = t . s i gmoid ( z )

10 a c t i v a t i o n s . append ( a c t i v a t i o n )

On the backwards pass, a delta value is calculated using output layer z-values and activa-

tions.

1 # a c t i v a t i o n s [−1] : l a s t a c t i v a t i o n ( o u t p u t )

2 # a c t i v a t i o n s [−2] : h i dd en l a y e r a c t i v a t i o n .

3

4 d e l t a = s e l f . c o s t _ f u n c t i o n _ p r i m e ( a c t i v a t i o n s [−1] , y ) ∗ t . s i gmo id_p r ime (

zs [−1])

5

6 # C a l c u l a t i o n s f o r g r a d i e n t s f o r o u t p u t l a y e r .

7 n a b l a _ b [−1] = d e l t a

8 nabla_w [−1] = np . d o t ( d e l t a , a c t i v a t i o n s [−2] . t r a n s p o s e ( ) )

Calculations for gradients for hidden layer uses update delta value, and the z-values and

weights of the previous layer (output layer) and the first activation (input).

1 sp = t . s i gmo id_p r ime ( z )

2 d e l t a = np . d o t ( s e l f . w e i g h t s [−1] . t r a n s p o s e ( ) , d e l t a ) ∗ sp

3

4 # G r a d i e n t s

5 n a b l a _ b [− l ] = d e l t a

6 nabla_w[− l ] = np . d o t ( d e l t a , a c t i v a t i o n s [−3] . t r a n s p o s e ( ) )
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The last line that uses the first activation is the reason we still see NaN values even after

masking. Further masking could be used here, but it was instead implemented in the

function that calls the backpropogation method.

As to the how the this calculation is done with an imperfect value, the masking is used

with the forwards pass where z-values are calculated. So that NaN wouldn’t propogate

through the network.

1 compressed_w = np . ma . c o m p r e s s _ c o l s ( masked_w )

2 compressed_a = np . ma . compress_rows ( masked_a )

3 z = np . d o t ( compressed_w , compressed_a ) + b

The rest of the calculations are done in a similar way to the scenario where the input is

not imperfect.
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6 Implementations

This proof of concept has been used on four separate datasets. Skin color (6.1) and number

recognition datasets (6.2) are typical classification problems while the last two datasets

(6.3 and 6.4) are simple regression problems.

For the datasets, no action was taken to remove the randomness in the process. This

means that during each epoch training dataset was shuffled.

For classification datasets, missing values were created randomly over the whole dataset.

This resulted in some inputs having only a single NaN while others having more than one.

However, for the summing function dataset I have only randomly removed the last vari-

able due to small amount of variables used in the dataset, and to be able to compare the

results more efficiently. The last dataset includes input with a range [13-15] numbers.

For this reason each data test, 3 different training was done and the average was taken.

The individual results of training with variable amount of missing value can be seen in

the following sections.

6.1 Skin Color Dataset

Table 6.1: Skin color dataset NN model structure
Input Size 3

Hidden Layer Size 10
Output Layer Size 2

Training Rate 0.5

This is a very simple classification dataset, with 3 inputs and an output with 2 classes.

Numbers represent red, green and blue values of pixes and output represents whether this

pixel belongs to skin or not.

75% percent of the data (50000 records) was used on training and the rest on validation.

31



This dataset was choosen for its simplicity and small amount inputs, as it made reasoning

about the partial training of weights slightly easier during the initial development of the

proof of concept.

The training results and comparison can be seen below.

Table 6.2: Skin color dataset results
Missing (%) Initial Match (%) E1 (%) E2 (%) E3 (%) E4 (%) E5 (%)

0 56.99 97.70 98.84 98.79 99.19 99.03
5 57.11 97.82 98.66 99.20 99.02 99.04
10 51.46 98.26 98.84 98.77 98.18 98.63
20 57.11 91.13 96.06 97.13 96.21 96.34
30 42.89 94.91 95.91 96.26 96.45 95.49

Figure 6.1: Epoch 5 Match Rates

6.2 MNIST Digit Dataset

Table 6.3: MNIST dataset NN model structure
Input Size 784

Hidden Layer Size 12
Output Layer Size 10

Training Rate 0.5
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MNIST database is a handwritten digits database that is commonly used with machine

learning tasks for benchmarking purposes.

Being a modified version of the original dataset from National Institute of Standards and

Technology located in United States, the digits are normalized and centered at a fixed

28x28 size. Each pixel represent its darkness with a fraction in the [0, 1] range.

Inputs are vectors with 784 elements, and outputs are represented as vectors with a size

of 10, each element representing a different digit. The training data size is 50 thousand,

and 10 thousand records are used for validation and testing.

Such a vectorized number looks as following when visualized by Python’s plotting library.

Figure 6.2: Number visualization

With 5% and 10% percent missing data, this number would look as follows:
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Figure 6.3: Number visualization with missing data

This dataset was chosen for its somewhat more complex structure and benchmarking

opportunities. It provided a good tool to test the proof of concept.

It should be noted that following results are for random missing data created over the

whole data. This means that individual missing data points for each row of data varies.

Although with higher percentages, it results in a dataset with each row having missing

data.

Below can be seen the histogram of rows with missing data for randomly created 5%

missing data.

Figure 6.4: Missing data histogram
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As it can be seen below, this situation highly affects the end results of the training.

Table 6.4: Skin color dataset results
Missing (%) Initial Match (%) E1 (%) E2 (%) E3 (%) E4 (%) E5 (%)

0 08.81 88.31 90.03 90.51 90.65 90.89
5 08.63 43.36 41.14 42.95 41.34 43.93
10 12.74 42.77 38.57 36.47 38.23 37.06
15 11.10 32.04 31.21 27.45 25.49 26.14

Figure 6.5: Epoch 5 Match Rates

6.3 Summing Function Dataset

Table 6.5: Summing formula dataset NN model structure

Input Size 4
Hidden Layer Size 10
Output Layer Size 1

Training Rate 0.05

This data set is created for floating numbers between 0 and 10 over the following summing

function:
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f (a,b,c,d) = 2a−3b+4c−5d (6.1)

Over 50000 rows are created, out of these rows random 10000 were chosen for training

and 5000 rows were chosen for validation. Due to the limited number of variables and

being a regression problem, missing variable was created only in the last variable (d).

Since this is mostly a floating-point arithmetics, a precision amount (epsilon) was used to

calculate the correctness of the results.

Initial results after training with complete data can be seen below.

Table 6.6: Summing function dataset training results with complete data.

Epsilon Average Match
0.01 98.58

And the results for training with missing data can be seen below.

Table 6.7: Summing function dataset training results with missing data.

Missing (%) Match (%), eps = 0.01 Match (%), eps = 0.1
5 27.77 88.92

10 20.83 71.00

A neural network trained with 5% missing data was also put to a simple test using ran-

dom number choices that wasn’t included in the validation dataset. The following neural

network gives 49.66% match rate at epsilon = 0.01 and 92.68% match rate at epsilon =

0.1.

Table 6.8: Comparison of Neural Network trained with missing data to the function

a b c d Function NN Deviation
13 17 21 10 9 8.9909 0.0090

1.25 13.6 -4.5 -9.4 -9.3 -9.4359 0.1359
4 5 6 7 -18 -18.001 0.0012

13 -50 12.41 99.9 -273.86 -273.94 0.0857
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6.4 Averaging Function Dataset

Table 6.9: Averaging formula dataset NN model structure

Input Size 15
Hidden Layer Size 25
Output Layer Size 1

Training Rate 0.001

This dataset was used to see if this method could be used for creating a NN model that

can take average of varying amount on input numbers. So the missing variables in these

inputs didn’t represent actual missing information.

Different combinations of training and validation datasets were used.

Table 6.10: Dataset variations
Training Dataset

Type 15 numbers 14 numbers 13 numbers Total Size
Full 12000 0 0 12000

Missing 10000 1000 1000 12000

Validation Dataset
Type 15 numbers 14 numbers 13 numbers Total Size
Full 12000 0 0 12000

Missing 10000 1000 1000 12000

The goal was to check the NN output results with different combinations of data. Missing

datasets contain a combination of inputs that have 15, 14, or 13 numbers. In general, this

came to a 1.70% missing data over all the datapoints.

The training results for different combinations can be seen below.

Table 6.11: Training results

Match rates in different precisions
Training Data Validation Data 0.1 0.2 0.3 0.4 0.5

Full Full 81.70% 96.54% 99.20% 99.75% 99.86%
Full Missing 68.82% 83.07% 88.69% 92.47% 94.76%

Missing Full 52.95% 90.54% 96.75% 98.63% 99.29%
Missing Missing 44.79% 79.09% 88.52% 91.95% 94.68%
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7 Conclusion

Method

The results of training with different sets of data shows that the acceptability of this

method depends highly on the amount and distribution of missing data, precision re-

quired and the task at hand.

Classification tasks are slightly more fitting for this method, considering how they might

have differing amount of redundant data. However, it was shown that above 5% missing

data, match rates drop fast. Although it was possible to get somewhat satisfying match

rates below 1% percent (75.27% match rate at 0.5% missing data).

One reason for the low match rates above 5% can be seen at the histogram of the dataset

provided above (fig. 6.4). This is the result of the method used to create the missing

datapoints. Missing points are created over the whole data set. This means that in higher

percentages, each row has missing values.

In a more organic dataset, missing values would be limited to only certain rows of data,

hence increasing the usability of this method for such datasets.

This could already be seen at the summing function implementation, where the missing

data is only in a 10% of the rows. The method can provide passable results in such cases,

depending on the precision required.

For the last implementation, good results were acquired for 0.3 precision when using

missing training data. However, in terms of creating a NN structure that mimics a generic

averaging function, it wasn’t as successful.

In general, I believe that masking method would deserve further research in the area of

handling imperfect missing data. The results show that it could have promise for handling

such cases, however it doesn’t quite offer a complete solution to the problem yet.
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Python

Python and its libraries proved to be very capable tools in both handling datasets and im-

plementing neural networks. They offer a lot of tools and methods, and more importantly,

flexibility, to experiment with different structures and data.
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Appendices

Appendix A - tools.py

This is a small script of helper functions used in other code parts.

1 i m p o r t numpy as np

2 i m p o r t m a t p l o t l i b . p y p l o t a s p l t

3

4 c l a s s DF( o b j e c t ) :

5 " " " C l a s s t o h a n d l e d a t a f r a m e r e l a t e d t a s k s . " " "

6

7 @ s t a t i c m e t h o d

8 d e f c o l _ v a l u e s ( df , co l , d i s p l a y = F a l s e ) :

9 " " " R e t u r n a c o u n t o f v a l u e s o f t h e g i v e n column . " " "

10 r e s = df [ c o l ] . v a l u e _ c o u n t s ( )

11 r e t u r n r e s

12

13 @ s t a t i c m e t h o d

14 d e f c o l _ n u l l _ c o u n t ( df , co l , d i s p l a y = F a l s e ) :

15 " " " R e t u r n a c o u n t o f n u l l v a l u e s i n t h e g i v e n column . " " "

16 c o u n t = df [ c o l ] . i s n u l l ( ) . sum ( )

17 r e t u r n c o u n t

18

19 d e f d i v i d e _ d a t a ( da t a , t _ p e r c e n t a g e ) :

20 " " " D iv id e t h e g i v e n d a t a by f r a c t i o n . " " "

21 p o r t i o n = l e n ( d a t a ) ∗ t _ p e r c e n t a g e / 100

22

23 d t = d a t a [ : p o r t i o n ]

24 dv = d a t a [ p o r t i o n : ]

25 r e t u r n ( dt , dv )

26

27 d e f v i s u a l i z e _ n u m b e r ( a _ v e c t o r ) :

28 " " " Takes a Numpy a r r a y v e c t o r and v i s u a l i z e s i t . " " "

29

30 a _ v e c t o r = np . nan_to_num ( a _ v e c t o r ) # r e s h a p i n g

31 a _ v e c t o r = np . a r r a y ( a _ v e c t o r , d t y p e =np . f l o a t 6 4 )
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32 p i x e l s = a _ v e c t o r . r e s h a p e ( 2 8 , 28)

33

34 p l t . t i t l e ( " Number " )

35 p l t . imshow ( p i x e l s , cmap=" g r a y _ r " )

36 p l t . show ( )

37

38 d e f n a n _ i n p u t ( inp , p e r c e n t a g e ) :

39 " " " Make random m i s s i n g i n each i n p u t . " " "

40 i n p = np . a r r a y ( i n p )

41 amount = i n t ( l e n ( i n p ) ∗ p e r c e n t a g e / 1 0 0 . 0 )

42 i n p . r a v e l ( ) [ np . random . c h o i c e ( i n p . s i z e , amount , r e p l a c e = F a l s e ) ] = np

. nan

43 r e t u r n i n p

44

45 # ACTIVATION FUNCTIONS

46 d e f s igmoid ( x ) :

47 " " " A s igmoid a c t i v a t i o n f u n c t i o n . " " "

48 r e t u r n 1 . 0 / ( 1 . 0 + np . exp(−x ) )

49

50 d e f so f tmax ( x ) :

51 r e t u r n np . exp ( x ) / np . sum ( np . exp ( x ) , a x i s =0)

52

53 d e f s igmo id_p r ime ( x ) :

54 " " " D e r i v a t i o n s igmoid ( x ) " " "

55 r e t u r n s igmoid ( x ) ∗ (1 − s igmoid ( x ) )

56

57 d e f l i n e a r ( x ) : r e t u r n x

58

59 d e f l i n e a r _ p r i m e ( x ) : r e t u r n np . ones ( x . shape )

60

61 d e f q u a d r a t i c _ c o s t _ p r i m e ( z , a , y ) :

62 " " " R e t u r n t h e e r r o r d e l t a from t h e o u t p u t l a y e r . " " "

63 r e t u r n ( a−y ) ∗ s igmo id_p r ime ( z )

64

65 d e f ReLU( x ) : r e t u r n np . maximum ( 0 , x )

66

67 d e f ReLU_prime ( x ) : r e t u r n ( x > 0) . a s t y p e ( f l o a t )

68

69 d e f leakyReLU ( x , l e a k a g e = 0 . 0 1 ) :
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70 o u t p u t = np . copy ( x )

71 o u t p u t [ o u t p u t < 0 ] ∗= l e a k a g e

72 r e t u r n o u t p u t

73

74 d e f leakyReLU_prime ( x , l e a k a g e = 0 . 0 1 ) :

75 r e t u r n np . c l i p ( x > 0 , l e a k a g e , 1 . 0 )

76

77 # MASKING RELATED FUNCTIONS

78 d e f c r e a t e _ w e i g h t _ m a s k ( a r r ) :

79 " " " C r e a t e a mask f o r a g i v e n i n p u t . " " "

80 r e t u r n [1 i f np . i s n a n ( i ) e l s e 0 f o r i i n a r r ]

Appendix B - mnist.py

This script contains functions and classes that help with parsing MNIST data for the neural

network.

1 i m p o r t p i c k l e , g z i p

2 i m p o r t numpy as np

3

4 c l a s s Mnis tDa ta ( ) :

5 dim = 784

6 d e f _ _ i n i t _ _ ( s e l f , p a t h ) :

7 " " " Load t h e raw d a t a from a p i c k l e f i l e . " " "

8 f i l e = g z i p . open ( pa th , " rb " )

9 s e l f . t r a i n i n g _ d a t a , s e l f . v a l i d a t i o n _ d a t a , s e l f . t e s t _ d a t a =

p i c k l e . l o a d ( f i l e )

10 f i l e . c l o s e ( )

11

12 d e f make_vec to r ( s e l f , num ) :

13 " " " C r e a t e 10−d v e c t o r o u t o f g i v e n num . " " "

14 z e r o s = np . z e r o s ( ( 1 0 , 1 ) )

15 z e r o s [ num ] = 1 . 0

16 r e t u r n z e r o s

17

18 d e f g e t _ t r a i n i n g _ d a t a ( s e l f ) :

19 " " " R e t u r n a z i p p e d t r a i n i n g d a t a . " " "

20 i n p u t s = [ np . r e s h a p e ( x , ( 7 8 4 , 1 ) ) f o r x i n s e l f . t r a i n i n g _ d a t a

[ 0 ] ]
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21 r e s u l t s = [ s e l f . make_vec to r ( y ) f o r y i n s e l f . t r a i n i n g _ d a t a [ 1 ] ]

22 r e t u r n z i p ( i n p u t s , r e s u l t s )

23

24 d e f g e t _ m i s s i n g _ t r a i n i n g _ d a t a ( s e l f , p e r c e n t a g e ) :

25 # Random m i s s i n g v a l u e s .

26 i n p u t s = [ np . r e s h a p e ( x , ( 7 8 4 , 1 ) ) f o r x i n s e l f . t r a i n i n g _ d a t a

[ 0 ] ]

27 r e s u l t s = [ s e l f . make_vec to r ( y ) f o r y i n s e l f . t r a i n i n g _ d a t a [ 1 ] ]

28

29 # Amount o f m i s s i n g d a t a p o i n t s .

30 amount = i n t ( l e n ( i n p u t s ) ∗ p e r c e n t a g e / 1 0 0 . 0 )

31

32 # C o n v e r t i n g t o f l o a t 6 4 t o p r e v e n t o v e r f l o w .

33 i n p u t s = np . a r r a y ( i n p u t s , d t y p e =np . f l o a t 1 2 8 )

34 i n p u t s . r a v e l ( ) [ np . random . c h o i c e ( i n p u t s . s i z e , amount , r e p l a c e =

F a l s e ) ] = np . nan

35 r e t u r n z i p ( i n p u t s , r e s u l t s )

36

37 d e f g e t _ a l l _ m i s s i n g _ t r a i n i n g _ d a t a ( s e l f , p e r c e n t a g e ) :

38 " " " C r e a t e m i s s i n g d a t a a l l t r a i n i n g i n p u t s . " " "

39 # Random m i s s i n g v a l u e s .

40 i n p u t s = [ np . r e s h a p e ( x , ( 7 8 4 , 1 ) ) f o r x i n s e l f . t r a i n i n g _ d a t a

[ 0 ] ]

41 r e s u l t s = [ s e l f . make_vec to r ( y ) f o r y i n s e l f . t r a i n i n g _ d a t a [ 1 ] ]

42

43 # Amount o f m i s s i n g d a t a p o i n t s .

44 amount = i n t ( l e n ( i n p u t s [ 0 ] ) ∗ p e r c e n t a g e / 1 0 0 . 0 )

45 # C o n v e r t i n g t o f l o a t 6 4 t o p r e v e n t o v e r f l o w .

46 i n p u t s = np . a r r a y ( i n p u t s , d t y p e =np . f l o a t 1 2 8 )

47

48 f o r i n p i n i n p u t s :

49 i n p . r a v e l ( ) [ np . random . c h o i c e ( i n p . s i z e , amount , r e p l a c e = F a l s e )

] = np . nan

50 r e t u r n z i p ( i n p u t s , r e s u l t s )

51

52 d e f g e t _ n e w _ m i s s i n g _ t r a i n i n g _ d a t a ( s e l f , p e r c e n t a g e ) :

53 " " " C r e a t e m i s s i n g d a t a ove r a l l t r a i n i n g i n p u t s . " " "

54
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55 i n p u t s = [ np . r e s h a p e ( x , ( 7 8 4 , 1 ) ) f o r x i n s e l f . t r a i n i n g _ d a t a

[ 0 ] ]

56 r e s u l t s = [ s e l f . make_vec to r ( y ) f o r y i n s e l f . t r a i n i n g _ d a t a [ 1 ] ]

57

58 # Amount o f m i s s i n g d a t a p o i n t s . 50000 rows ∗ 784 columns .

59 d a t a s i z e = l e n ( i n p u t s ) ∗ l e n ( i n p u t s [ 0 ] )

60 amount = i n t ( d a t a s i z e ∗ p e r c e n t a g e / 1 0 0 . 0 )

61

62 # C o n v e r t i n g t o f l o a t 6 4 t o p r e v e n t o v e r f l o w .

63 i n p u t s = np . a r r a y ( i n p u t s , d t y p e =np . f l o a t 1 2 8 )

64 i n p u t s . r a v e l ( ) [ np . random . c h o i c e ( i n p u t s . s i z e , amount , r e p l a c e =

F a l s e ) ] = np . nan

65 r e t u r n z i p ( i n p u t s , r e s u l t s )

66

67 d e f g e t _ v a l i d a t i o n _ d a t a ( s e l f ) :

68 " " " R e t u r n a z i p p e d v a l i d a t i o n d a t a . " " "

69 i n p u t s = [ np . r e s h a p e ( x , ( 7 8 4 , 1 ) ) f o r x i n s e l f . v a l i d a t i o n _ d a t a

[ 0 ] ]

70 r e s u l t s = [ s e l f . make_vec to r ( y ) f o r y i n s e l f . v a l i d a t i o n _ d a t a

[ 1 ] ]

71 r e t u r n z i p ( i n p u t s , r e s u l t s )

72

73 d e f g e t _ t e s t _ d a t a ( s e l f ) :

74 " " " R e t u r n a z i p p e d v a l i d a t i o n d a t a . " " "

75 i n p u t s = [ np . r e s h a p e ( x , ( 7 8 4 , 1 ) ) f o r x i n s e l f . t e s t _ d a t a [ 0 ] ]

76 r e s u l t s = [ s e l f . make_vec to r ( y ) f o r y i n s e l f . t e s t _ d a t a [ 1 ] ]

77 r e t u r n z i p ( i n p u t s , r e s u l t s )

78

79 d e f g e t _ t r a i n i n g _ i m a g e s ( s e l f ) : r e t u r n s e l f . t r a i n i n g _ d a t a [ 0 ]

80

81 d e f g e t _ v a l i d a t i o n _ i m a g e s ( s e l f ) : r e t u r n s e l f . v a l i d a t i o n _ d a t a [ 0 ]

82

83 d e f g e t _ t e s t _ i m a g e s ( s e l f ) : r e t u r n s e l f . t e s t _ d a t a [ 0 ]

84

85 d e f g e t _ t r a i n i n g _ l a b e l s ( s e l f , v e c t o r = F a l s e ) :

86 l a b e l s = s e l f . t r a i n i n g _ d a t a [ 1 ]

87 i f v e c t o r :

88 l a b e l s _ v = l i s t ( )

89 f o r x i n l a b e l s :
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90 l a b e l s _ v . append ( s e l f . make_vec to r ( x ) )

91 r e t u r n l a b e l s _ v

92 e l s e :

93 r e t u r n l a b e l s

94

95 d e f g e t _ v a l i d a t i o n _ l a b e l s ( s e l f , v e c t o r = F a l s e ) :

96 l a b e l s = s e l f . v a l i d a t i o n _ d a t a [ 1 ]

97 i f v e c t o r :

98 l a b e l s _ v = l i s t ( )

99 f o r x i n l a b e l s :

100 l a b e l s _ v . append ( s e l f . make_vec to r ( x ) )

101 r e t u r n l a b e l s _ v

102 e l s e :

103 r e t u r n l a b e l s

104

105 d e f g e t _ t e s t _ l a b e l s ( s e l f , v e c t o r = F a l s e ) :

106 l a b e l s = s e l f . t e s t _ d a t a [ 1 ]

107 i f v e c t o r :

108 l a b e l s _ v = l i s t ( )

109 f o r x i n l a b e l s :

110 l a b e l s _ v . append ( s e l f . make_vec to r ( x ) )

111 r e t u r n l a b e l s _ v

112 e l s e :

113 r e t u r n l a b e l s

Appendix C - neural.py

Neural network class implemented in Numpy and Python. Following structure was used

with linear neural network implementations.

1 i m p o r t pandas as p

2 i m p o r t numpy as np

3 i m p o r t t o o l s a s t

4 from k e r a s . u t i l s . n p _ u t i l s i m p o r t t o _ c a t e g o r i c a l

5 from math i m p o r t f a b s

6

7 c l a s s L i n e a r N e u r a l N e t w o r k ( o b j e c t ) :

8 " " " A n e u r a l ne twork model wi th l i n e a r a c t i v a t i o n f u n c t i o n s . " " "

9
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10 m i n i _ b a t c h _ s i z e = 10

11

12 # F i l e names f o r t h e saved s t a t e s .

13 b i a s _ f i l e n a m e = " s t a t e s / b n _ b i a s e s . npy "

14 w e i g h t s _ f i l e n a m e = " s t a t e s / b n _ w e i g h t s . npy "

15

16 e p s i l o n = 0 . 1 # d e f a u l t p r e c i s i o n

17

18 d e f _ _ i n i t _ _ ( s e l f , l a y e r s , debug= F a l s e ) :

19 " " " I n i t i a l i z a t i o n . " " "

20

21 s e l f . n u m b e r _ o f _ l a y e r s = l e n ( l a y e r s ) # T o t a l number o f l a y e r s .

22 s e l f . l a y e r s = l a y e r s # La ye r s and t h e i r s i z e .

23

24 s e l f . w e i g h t s = l i s t ( )

25 s e l f . b i a s e s = l i s t ( )

26 s e l f . debug = debug

27

28 i f debug :

29 # Load pre−saved s t a t e s .

30 # Th i s w i l l p r o v i d e a s i m i l a r s t a r t i n g p o i n t .

31 p r i n t "> Loading s t a t e s from f i l e . "

32 s e l f . b i a s e s , s e l f . w e i g h t s = s e l f . _ _ l o a d _ s t a t e s ( )

33

34 e l s e :

35 p r i n t "> Randomly i n i t i a l i z i n g s t a t e s . "

36 s e l f . b i a s e s = s e l f . _ _ i n i t i a l i z e _ b i a s e s ( )

37 s e l f . w e i g h t s = s e l f . _ _ i n i t i a l i z e _ w e i g h t s ( )

38

39 # T r a i n i n g and v a l i d a t i o n d a t a .

40 s e l f . d t = None

41 s e l f . dv = None

42 p r i n t "> Network i n i t i a l i z e d randomly . "

43

44 # PRIVATE METHODS

45 d e f _ _ s a v e _ s t a t e ( s e l f ) :

46 " " " Save t h e c u r r e n t s t a t e o f t h e ne twork . " " "

47

48 np . s ave ( s e l f . b i a s _ f i l e n a m e , s e l f . b i a s e s )
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49 np . s ave ( s e l f . w e i g h t s _ f i l e n a m e , s e l f . w e i g h t s )

50 p r i n t "> Network s t a t e i s saved . "

51

52 d e f _ _ l o a d _ s t a t e s ( s e l f ) :

53 " " " Loads s t a t e from save ∗npy f i l e . " " "

54

55 b = np . l o a d ( s e l f . b i a s _ f i l e n a m e )

56 w = np . l o a d ( s e l f . w e i g h t s _ f i l e n a m e )

57 r e t u r n b , w

58

59 d e f _ _ i n i t i a l i z e _ w e i g h t s ( s e l f ) :

60 " " " Randomly i n i t i a l i z e w e i g h t s . " " "

61 # We c r e a t e a t r a n s p o s e d w e i g h t s l i s t s .

62 # w e i g h t s [ 0 ] −> w e i g h t s c o n n e c t i n g l a y e r s [ 0 ] −> l a y e r s [ 1 ]

63

64 # C r e a t i n g a l i s t o f t u p l e s t h a t r e p r e s e n t w c o n n e c t i o n s .

65 # Example : l a y e r s = [A B C] where A, B , C a r e i n t e g e r s .

66 # z i p p e d = [ ( A, B) , (B , C) ]

67 z i p p e d = z i p ( s e l f . l a y e r s [ : −1 ] , s e l f . l a y e r s [ 1 : ] )

68

69 r e t u r n [ np . random . randn ( y , x ) f o r x , y i n z i p p e d ]

70 # Example :

71 # l a y e r s = [ 2 , 3 , 1 ]

72 # w e i g h t s = [ a r r a y ( [ [ 0 .75054289 , −0.18324735] ,

73 # [ 0 .32141292 , −0.54226539] ,

74 # [−0.53575605 , 0 . 2 5 7 6 1 2 0 2 ] ] ) ,

75 # a r r a y ( [ [ 0 .22304971 , 1 .29879581 , −0 .49437018] ] ) ]

76

77 d e f _ _ i n i t i a l i z e _ b i a s e s ( s e l f ) :

78 " " " Randomly i n i t i a l i z e b i a s e s . " " "

79 # We b a s i c a l l y c r e a t e a v e c t o r v i a t r a n s p o s e . . .

80 # column v e c t o r s a r e needed .

81 # I f a l a y e r has 3 neurons , r andn ( 3 , 1 ) c r e a t e s a 3x1 m a t r i x .

82 # Which r e p r e s e n t e d i n Python i n t h e f o l l o w i n g way :

83 # [ [ 0 . 1 ] ,

84 # [ 0 . 2 ] ,

85 # [ 0 . 1 ] ]

86 # b i a s e s [ 0 ] −> b i a s e s i n l a y e r s [ 1 ]

87 r e t u r n [ np . random . randn ( x , 1 ) f o r x i n s e l f . l a y e r s [ 1 : ] ]
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88

89 # METHODS.

90 d e f p r o c e s s ( s e l f , a , l a b e l = F a l s e ) :

91 " " " I n p u t t o t h e sys tem i s p r o c e s s e d t h r o u g h t h e l a y e r s

92 of t h e network , and o u t p u t i s p roduced . " " "

93 i f np . i s n a n ( a ) . sum ( ) > 0 :

94 r e t u r n s e l f . p r o c e s s _ n a n ( a , l a b e l )

95 e l s e :

96 # With each s t e p , a c t i v a t i o n o f l a y e r i s u p d a t e d

97 # Hidden l a y e r a c t i v a t i o n

98 z = np . d o t ( s e l f . w e i g h t s [ 0 ] , a ) + s e l f . b i a s e s [ 0 ]

99 a = t . leakyReLU ( z )

100 # Outpu t l a y e r a c t i v a t i o n

101 z = np . d o t ( s e l f . w e i g h t s [ 1 ] , a ) + s e l f . b i a s e s [ 1 ]

102 a = t . leakyReLU ( z )

103

104 i f l a b e l : r e t u r n np . argmax ( a )

105 r e t u r n a

106

107 d e f p r o c e s s _ n a n ( s e l f , x , l a b e l = F a l s e ) :

108 " " " C a l c u l a t i o n t h e a c t i v a t i o n wi th m i s s i n g v a l u e s . " " "

109

110 # HIDDEN LAYER

111 # Mask i s used t o c a l c u l a t e d t h e o u t p u t .

112 h _ p a t t e r n = t . c r e a t e _ w e i g h t _ m a s k ( x )

113 h_mask = [ h _ p a t t e r n f o r i i n r a n g e ( l e n ( s e l f . w e i g h t s [ 0 ] ) ) ]

114

115 masked_w = np . ma . a r r a y ( s e l f . w e i g h t s [ 0 ] , mask=h_mask )

116 masked_a = np . ma . a r r a y ( x , mask= h _ p a t t e r n )

117 a = t . leakyReLU ( np . d o t ( np . ma . c o m p r e s s _ c o l s ( masked_w ) ,

118 np . ma . compress_rows ( masked_a ) ) + s e l f . b i a s e s [ 0 ] )

119

120 # OUTPUT LAYER

121 a = t . leakyReLU ( np . d o t ( s e l f . w e i g h t s [ 1 ] , a ) + s e l f . b i a s e s [ 1 ] )

122

123 i f l a b e l : r e t u r n np . argmax ( a )

124 r e t u r n a

125

126 d e f t r a i n ( s e l f , epochs , e t a ) :
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127 " " " T r a i n i n g t h e n e u r a l ne twork u s i n g t r a i n i n g _ d a t a . " " "

128

129 t r a i n i n g _ d a t a = s e l f . d t

130 t e s t _ d a t a = s e l f . dv

131 p r i n t "> S t a r t i n g t h e t r a i n i n g . "

132 p r i n t "> Epochs \ t : " , epochs

133 p r i n t "> Eta \ t : " , e t a , " \ n "

134 p r i n t "> I n i t i a l match r a t e : {0} %" . f o r m a t ( s e l f . e v a l u a t e (

t e s t _ d a t a ) )

135

136 f o r e i n x ra ng e ( epochs ) :

137 # S h u f f l i n g t h e d a t a t o i n c r e a s e t h e randomness .

138 i f n o t s e l f . debug :

139 np . random . s h u f f l e ( t r a i n i n g _ d a t a )

140 p r i n t "> S h u f f l i n g d a t a . "

141 p r i n t "> Epoch {0} : Upda t ing . " . f o r m a t ( e +1)

142 f o r d a t a i n t r a i n i n g _ d a t a :

143 # Weights and b i a s e s a r e u p d a t e d a c c o r d i n g t o

144 # t h e g r a d i e n t d e s c e n t c a l c u l a t e d .

145 s e l f . _ _ u p d a t e _ w e i g h t s ( da t a , e t a )

146

147 p r i n t "> Epoch { 0 } : Completed . " . f o r m a t ( e +1)

148 p r i n t "> Epoch { 0 } : Match r a t e : {1}%" . f o r m a t ( e +1 , s e l f .

e v a l u a t e ( t e s t _ d a t a ) )

149

150 d e f _ _ u p d a t e _ w e i g h t s ( s e l f , da t a , e t a ) :

151 " " " Update t h e w e i g h t s and b i a s e s . " " "

152 x = d a t a [ 0 ]

153 y = d a t a [ 1 ]

154

155 # Check f o r m i s s i n g v a l u e s .

156 i f np . i s n a n ( x ) . sum ( ) > 0 :

157 # C r e a t i n g empty m a t r i c e s wi th b i a s and we ig h t dims .

158 n a b l a _ b = [ np . z e r o s ( b . shape ) f o r b i n s e l f . b i a s e s ]

159 nabla_w = [ np . z e r o s (w. shape ) f o r w i n s e l f . w e i g h t s ]

160

161 # C a l c u l a t e a s u b s e t o f D e l t a Nab las .

162 d e l t a _ n a b l a _ b , d e l t a _ n a b l a _ w = s e l f . _ _ b a c k p r o p o g a t i o n ( x , y )

163 # Be fo r e we add c a l c u l a t e d g r a d i e n t s , we need t o
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164 # use masking because , f o r i n p u t s wi th nan , t h e r e

165 # a r e a l s o nan ’ s r e l a t e d t o t h e s e v a l u e s from t h e

166 # b a c k p r o p o g a t i o n o u t p u t .

167 h _ p a t t e r n = t . c r e a t e _ w e i g h t _ m a s k ( x )

168 h_mask = [ h _ p a t t e r n f o r i i n r a n g e ( l e n ( nabla_w [ 0 ] ) ) ]

169

170 # Masked h id de n l a y e r w e i g h t s .

171 masked_hw = np . ma . a r r a y ( nabla_w [ 0 ] , mask=h_mask )

172 # Upda t ing masked w e i g h t s .

173 masked_hw += d e l t a _ n a b l a _ w [ 0 ]

174 nabla_w [ 0 ] = np . a r r a y ( masked_hw )

175 # Upda t ing o u t p u t l a y e r .

176 nabla_w [ 1 ] += d e l t a _ n a b l a _ w [ 1 ]

177

178 # Upda t ing b i a s e s as u s u a l .

179 n a b l a _ b = [ nb + dnb f o r nb , dnb i n z i p ( nab la_b ,

d e l t a _ n a b l a _ b ) ]

180 e l s e : # F u l l s e t o f d a t a comes i n .

181 nab la_b , nabla_w = s e l f . _ _ b a c k p r o p o g a t i o n ( x , y )

182

183 s e l f . w e i g h t s = [w − ( e t a ∗ nw ) f o r w, nw i n z i p ( s e l f . we igh t s ,

nabla_w ) ]

184 s e l f . b i a s e s = [ b − ( e t a ∗ nb ) f o r b , nb i n z i p ( s e l f . b i a s e s ,

n a b l a _ b ) ]

185

186 d e f _ _ b a c k p r o p o g a t i o n ( s e l f , x , y ) :

187 " " " B a c k p r o p o g a t i o n method used wi th s u p p l i e d i n p u t and o u t p u t .

188 REF : h t t p : / / n e u r a l n e t w o r k s a n d d e e p l e a r n i n g . com / chap2 . h tml

189 " " "

190 # Empty m a t r i c e s wi th b i a s s h a p e s / s i z e s .

191 n a b l a _ b = [ np . z e r o s ( b . shape ) f o r b i n s e l f . b i a s e s ]

192 nabla_w = [ np . z e r o s (w. shape ) f o r w i n s e l f . w e i g h t s ]

193

194 i f np . i s n a n ( x ) . sum ( ) > 0 :

195 h _ p a t t e r n = t . c r e a t e _ w e i g h t _ m a s k ( x )

196 h_mask = [ h _ p a t t e r n f o r i i n r a n g e ( l e n ( nabla_w [ 0 ] ) ) ]

197

198 a c t i v a t i o n = x # The i n i t i a l a c t i v a t i o n .

199 a c t i v a t i o n s = [ x ] # L i s t o f a c t i v a t i o n s
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200 zs = [ ] # L i s t o f o u t p u t s

201

202 # HIDDEN LAYER.

203 # We need t o mask w e i g h t s and a c t i v a t i o n f o r t h i s

204 # l a y e r b e c a u s e t h e y i n c l u d e d nan v a l u e s .

205 masked_w = np . ma . a r r a y ( nabla_w [ 0 ] , mask=h_mask )

206 masked_a = np . ma . a r r a y ( a c t i v a t i o n , mask= h _ p a t t e r n )

207 b = s e l f . b i a s e s [ 0 ]

208

209 # Masking o u t t h e nan r e l a t e d v a l u e s .

210 z = np . d o t ( np . ma . c o m p r e s s _ c o l s ( masked_w ) , np . ma .

compress_rows ( masked_a ) ) + b

211 zs . append ( z )

212

213 # New a c t i v a t i o n .

214 a c t i v a t i o n = t . leakyReLU ( z )

215 a c t i v a t i o n s . append ( a c t i v a t i o n )

216

217 # OUTPUT LAYER.

218 w = s e l f . w e i g h t s [ 1 ]

219 b = s e l f . b i a s e s [ 1 ]

220 z = np . d o t (w, a c t i v a t i o n ) + b

221 zs . append ( z )

222

223 # New a c t i v a t i o n .

224 a c t i v a t i o n = t . leakyReLU ( z )

225 a c t i v a t i o n s . append ( a c t i v a t i o n )

226

227 # BACKPROPOGATION PART .

228 d e l t a = s e l f . c o s t _ f u n c t i o n _ p r i m e ( a c t i v a t i o n s [−1] , y ) ∗ t .

leakyReLU_prime ( zs [−1])

229 n a b l a _ b [−1] = d e l t a

230 nabla_w [−1] = np . d o t ( d e l t a , a c t i v a t i o n s [−2] . t r a n s p o s e ( ) )

231

232 # LAYERS

233 # Handles on ly one h id de n l a y e r c u r r e n t l y .

234 # l = 2 b e c a u s e wi th [ inp , h idden , ou tp ] s t r u c t u r e . . .

235 # t h e l a s t l a y e r . i n d e x i s 2 . Now we go " back "

236 l = 2
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237 z = zs [− l ]

238

239 sp = t . leakyReLU_prime ( z )

240 d e l t a = np . d o t ( s e l f . w e i g h t s [− l + 1 ] . t r a n s p o s e ( ) , d e l t a ) ∗

sp

241 n a b l a _ b [− l ] = d e l t a

242 nabla_w[− l ] = np . d o t ( d e l t a , a c t i v a t i o n s [− l − 1 ] . t r a n s p o s e ( )

)

243

244 r e t u r n nab la_b , nabla_w

245 e l s e :

246 a c t i v a t i o n = x

247 a c t i v a t i o n s = [ x ]

248 zs = [ ]

249 # FORWARD PASS

250 # HIDDEN LAYER

251 w = s e l f . w e i g h t s [ 0 ]

252 b = s e l f . b i a s e s [ 0 ]

253

254 z = np . d o t (w, a c t i v a t i o n ) + b

255 zs . append ( z )

256

257 # New a c t i v a t i o n .

258 a c t i v a t i o n = t . leakyReLU ( z )

259 a c t i v a t i o n s . append ( a c t i v a t i o n )

260

261 # OUTPUT LAYER

262 w = s e l f . w e i g h t s [ 1 ]

263 b = s e l f . b i a s e s [ 1 ]

264

265 z = np . d o t (w, a c t i v a t i o n ) + b

266 zs . append ( z )

267

268 # New a c t i v a t i o n .

269 a c t i v a t i o n = t . leakyReLU ( z )

270 a c t i v a t i o n s . append ( a c t i v a t i o n )

271

272 # BACKPROPAGATION
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273 d e l t a = s e l f . c o s t _ f u n c t i o n _ p r i m e ( a c t i v a t i o n s [−1] , y ) ∗ t .

leakyReLU_prime ( zs [−1])

274 n a b l a _ b [−1] = d e l t a

275 nabla_w [−1] = np . d o t ( d e l t a , a c t i v a t i o n s [−2] . t r a n s p o s e ( ) )

276

277 f o r l i n x ra ng e ( 2 , s e l f . n u m b e r _ o f _ l a y e r s ) :

278 z = zs [− l ]

279 sp = t . leakyReLU_prime ( z )

280 d e l t a = np . d o t ( s e l f . w e i g h t s [− l + 1 ] . t r a n s p o s e ( ) , d e l t a )

∗ sp

281 n a b l a _ b [− l ] = d e l t a

282 nabla_w[− l ] = np . d o t ( d e l t a , a c t i v a t i o n s [− l − 1 ] .

t r a n s p o s e ( ) )

283

284 r e t u r n nab la_b , nabla_w

285

286 d e f c o s t _ f u n c t i o n _ p r i m e ( s e l f , o u t p u t _ a c t i v a t i o n , y ) :

287 " " " D e r i v a t i o n o f t h e used c o s t f u n c t i o n . " " "

288 r e t u r n o u t p u t _ a c t i v a t i o n − y

289

290 d e f e v a l u a t e ( s e l f , t e s t _ d a t a ) :

291 " " " E v a l u a t e t h e n e u r a l ne twork s u c c e s s r a t e .

292 R e t u r n s match r a t e a s p e r c e n t a g e . " " "

293 c o r r e c t = 0

294

295 f o r ( x , y ) i n t e s t _ d a t a :

296 # y −> [ [ < va l > ] ]

297 # r e s −> [ [ < va l > ] ]

298 r e s = s e l f . p r o c e s s ( x )

299

300 i f abs ( r e s − y ) <= s e l f . e p s i l o n :

301 c o r r e c t += 1

302 r e t u r n 100 .0 ∗ c o r r e c t / ( l e n ( t e s t _ d a t a ) ∗ 1 . 0 )

Appendix D - train.py

A sample training script to used with above neural network structure.

1 i m p o r t numpy as np
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2 i m p o r t pandas as pd

3 i m p o r t t o o l s a s t

4 from n e u r a l i m p o r t L i n e a r N e u r a l N e t w o r k

5

6 d e f g e t _ d a t a ( t r a i n i n g =True , m i s s i n g = F a l s e ) :

7 " " " Get t r a i n i n g d a t a . " " "

8

9 i f t r a i n i n g :

10 i f m i s s i n g :

11 f i l e n a m e _ x s = " d a t a / avg / t r a i n i n g _ m i s s i n g _ x s . csv "

12 f i l e n a m e _ y = " d a t a / avg / t r a i n i n g _ m i s s i n g _ y . csv "

13 e l s e :

14 f i l e n a m e _ x s = " d a t a / avg / t r a i n i n g _ f u l l _ x s . c sv "

15 f i l e n a m e _ y = " d a t a / avg / t r a i n i n g _ f u l l _ y . csv "

16 e l s e :

17 i f m i s s i n g :

18 f i l e n a m e _ x s = " d a t a / avg / v a l i d a t i o n _ m i s s i n g _ x s . csv "

19 f i l e n a m e _ y = " d a t a / avg / v a l i d a t i o n _ m i s s i n g _ y . csv "

20 e l s e :

21 f i l e n a m e _ x s = " d a t a / avg / v a l i d a t i o n _ f u l l _ x s . c sv "

22 f i l e n a m e _ y = " d a t a / avg / v a l i d a t i o n _ f u l l _ y . csv "

23

24 # P r e p a r i n g X’ s .

25 xs = pd . r e a d _ c s v ( f i l e n a m e _ x s ) . a s _ m a t r i x ( )

26 temp_xs = l i s t ( )

27 f o r i i n xs :

28 temp_xs . append ( i . r e s h a p e ( 1 5 , 1 ) )

29 xs = np . a r r a y ( temp_xs )

30 xs = xs . a s t y p e ( np . f l o a t 1 2 8 )

31

32 # P r e p a r i n g Y’ s .

33 ys = pd . r e a d _ c s v ( f i l e n a m e _ y ) . a s _ m a t r i x ( )

34 temp_ys = l i s t ( )

35 f o r i i n ys :

36 temp_ys . append ( i . r e s h a p e ( 1 , 1 ) )

37 ys = np . a r r a y ( temp_ys )

38 ys = ys . a s t y p e ( np . f l o a t 1 2 8 )

39

40 r e t u r n z i p ( xs , ys )
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41

42 # T r a i n i n g da ta , f u l l and m is i ng v e r s i o n s

43 t f d = g e t _ d a t a ( t r a i n i n g =True , m i s s i n g = F a l s e )

44 tmd = g e t _ d a t a ( t r a i n i n g =True , m i s s i n g =True )

45 # V a l i d a t i o n da t a , f u l l and m i s s i n g v e r s i o n s

46 vfd = g e t _ d a t a ( t r a i n i n g = F a l s e , m i s s i n g = F a l s e )

47 vmd = g e t _ d a t a ( t r a i n i n g = F a l s e , m i s s i n g =True )

48

49 n = L i n e a r N e u r a l N e t w o r k ( [ 1 5 , 75 , 1 ] )

50 n . d t = tmd

51 n . dv = vfd

52 n . t r a i n ( 1 0 , 0 . 0 0 1 )
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