TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Andrei Maalberg

SpaceWire to SPI Bridge in VHDL for Microsemi
ProASIC3E FPGA

Master’s Thesis

Supervisor(s): Prof. René Beuchat (EPFL),

Prof. Eduard Petlenkov (TTU),
Dr. Jean-Luc Josset (Space-X),

Dr. Mitko Tanevski (Space-X)

Tallinn 2018

Declaration: I hereby declare that this Master’s thesis, my original investigation and achieve-
ment, submitted for the Master’s degree at Tallinn University of Technology, has not been sub-
mitted for any degree or examination.

Deklareerin, et kdesolev magistritoo, mis on minu iseseisva too tulemus, on esitatud Tallinna

Tehnikaiilikooli magistrikraadi taotlemiseks ja selle alusel ei ole varem taotletud akadeemilist
kraadi.

Andrei Maalberg

Date:

SIgNAtUIe: ..ottt ettt

Contents

Abstract

1 Introduction

1.1
1.2
1.3

1.4

Context
Scope
State of the Art

1.3.1

1.3.2 SpaceWire RMAP IP Core Availability

1.3.3

Thesis Outline

Space Project Regulations

Microsemi Community

2 Requirements

2.1

2.2 SpaceWire RMAP Target Connectivity
2.3 Microsemi ProASIC3E Starter Kit FPGA

SPI Slave Connectivity

3 Design Under Analysis

3.1

3.2 System-on-a-Chip Architecture

33

Double Slave Feature

3.2.1
322

3.23

Non System-on-a-Chip Architecture

3.3.1
332

3.33

Overview
Applicability
32.2.1
3222

Design Redundancy

Resolution

Overview
Applicability
3.3.2.1 SpaceWire RMAP IP Core

Resolution

Support by FPGA Tools . .

11
11
12
13
13
13
13
13

15
15
15
15

4 SpaceWire to SPI Bridge Design

4.1 OVeIVIEW o i e e e e e
42 Memory Mapping e e e e
421 Registers
422 Mailboxes.
43 Bridge Controller
44 RAMController
4.4.1 Mailbox RAM Controller
442 Register RAMController.

5 SPI Slave Controller Design

5.1 Protocol Description Lo
5.2 Protocol Usage Considerations,
5.2.1 Clock PolarityandPhase
5.2.2 Serial Clock Frequency
523 MSbfirstvs. LSbfirst L oo
5.3 Command Interface
5.3.1 Read Command Interface
5.3.2 Write Command Interface
5.3.3 Examples of Command Interface Usage
5.34 Take-Away Points
5.4 Controller Block Diagram
5.4.1 Capture and Propagation of SPI Signals
5.4.2 Clock Domain Crossing
543 Command Interface Codec

6 SpaceWire Codec Design

6.1 Protocol Description
6.2 Protocol Usage Considerations
6.2.1 SDRvs.DDR
6.2.2 DataSignalingRate
6.2.3 Transmitter Clock Generation
6.2.4 Receiver Clock Recovery
6.2.5 Time-Code Support.
6.3 Global Block Diagram
6.4 Core Block Diagram e

21
21
21
22
23
24
24
25
25

26
26
27
27
27
28
28
29
29
30
31
31
32
33
34

6.5 RxPipeline

6.5.1 Deserializer
6.5.2 Clock Domain Crossing
6.53 Decoder.
6.54 HostFIFO
6.6 TxPipeline
6.6.1 HostFIFO
6.6.2 Encoder
6.6.3 Clock Domain Crossing
6.6.4 Serializer
6.6.5 Strobe Generator

7 SpaceWire RMAP Target Controller Design

7.1 Protocol Description
7.1.1 ReadCommand.,

7.1.2 Write Command

7.2 Protocol Usage Considerations
7.3 Command Interface
73.1 CommandField.
73.1.1 Read

7312 Write oL

732 AddressFields

7.33 RedundantFields

7.3.4 Examples of Command Interface Usage

7.4 Controller Block Diagram
TAT OVeIVIEW o vttt e e e

742 CommandDecoder

743 ReplyEncoder

744 TargetController

7.4.5 Global Timing Diagrams for RMAP Write and Read Commands

8 Prototyping the Design on Microsemi ProASIC3E Starter Kit FPGA

8.1 OVerview e e
8.2 I/O Banks Configuration
83 Soft ARM Support
84 RAMInference

46
46
46
46
46
47
48
48
49
49
49
50
51
51
52
52
52
52

8.5 SpaceWire Rx Clock Recovery Constraints
8.6 Verificationand Resultso L oL
8.6.1 Simulation
8.6.2 AreaSummary
8.6.3 Prototype Assembly and Testing

8.7 Areas for Improvement

Conclusions

A Essential RTL Design Practices Used

A.1 Reset Synchronizer
A.2 Two-Process Design Method

Bibliography

64

66
66
66

69

Abstract

SpaceWire to SPI Bridge in VHDL for Microsemi ProASIC3E FPGA

Even though digital designs incorporating a system-on-a-chip (SoC) architecture are becoming
increasingly prevalent nowadays, there are still certain applications, e.g. space industry projects,
where the rise of the system complexity caused by the use of SoC architectures may not be
always justified. This work addresses this issue by designing a lean hardware-only solution for
its final goal—a SpaceWire to SPI bridge developed in cooperation with the Space Exploration
Institute (Space-X). By analyzing the possible design architecture options, including the one
based on SoC, this work provides critical arguments regarding the choice of the hardware-only
architecture. Additionally, while targeting ProASIC3E FPGA from Microsemi this work gives
the required overview of both the educational and technical resources provided by this FPGA
vendor. Based on the positive results of the final design implementation, this work has shown
that a hardware-only design approach is indeed a viable architecture solution even if it may take
more time to be developed compared to SoC design. Finally, the design solution proposed in this
work could be especially attractive for the other projects that require this kind of communication
bridge functionality while facing similar design architecture constraints.

List of Figures

1.1
1.2

3.1
32
33
34

4.1
4.2
4.3

5.1
5.2
53
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14

6.1
6.2
6.3

LEWISusecaseexample 11
General goal of the project in the Space Exploration Institute (Space-X) 12
Global block diagram of design under analysis 16
Sequence diagram of design under analysis 17
System-on-a-chip architecture of design under analysis 18
Non system-on-a-chip architecture of design under analysis 19
SpW2SPI bridge block diagram oo oL 21
SpW2SPI bridge mailbox memory mapping 23
Spw2SPI bridge mailbox RAM controller 25
SPI master slave wiring scheme 26
CPOL and CPHA parameters used by SPI slave controller 27
Serial clock frequency supported by SPI slave controller 28
Most significant bit sent first during byte transmission over SPT 28
Data read from SpW2SPI bridge through SPT 29
Data write to SpW2SPI bridge through SPT 29
Write telemetry using SPI command interface 30
Read SPI communication status using SPI command interface 31
SPI slave controller block diagram 32
SPIsignal capture circuit L. 32
SPI signal propagation circuit. 33
Asynchronous FIFO block diagram for SPI controller CDC 33
Asynchronous FIFO timing diagram for SPI controller CDC 34
SPI slave controller timing constraint during read operation 35
SpaceWire DS encoding technique 36
SpaceWire LVDS signaling oo oo 37
SpaceWire receiver clock and data recovery logic 38

6

6.4 SpaceWire codec global block diagram
6.5 SpaceWire codec core block diagram
6.6 SpaceWire codec Rx deserializer block diagram
6.7 SpaceWire Rx decoder FSM operating on 2-bit samples (smp)
6.8 SpaceWire Tx encoder block diagram

7.1 SpaceWire RMAP target controller block diagram
7.2 SpaceWire RMAP target global timing diagram for RMAP write command
7.3 SpaceWire RMAP target global timing diagram for RMAP read command . . .

8.1 Microsemi ProASIC3E Starter Kit [1]

8.2 Microsemi ProASIC3E I/O banks configuration

8.3 Microsemi ProASIC3E Starter Kit voltage level settings for I/O banks 4 and 5 .

8.4 Microsemi ProASIC3E Starter Kit prototype top level schematic

8.5 Microsemi ProASIC3E Starter Kit prototype SpW Rx clock recovery placement
8.6 SpW2SPI prototype simulation testbench block diagram

8.7 Microsemi ProASIC3E Starter Kit prototype inaction

8.8 Microsemi ProASIC3E Starter Kit prototype test sequence

8.9 Microsemi ProASIC3E Starter Kit prototype SPI status register reading

8.10 Microsemi ProASIC3E Starter Kit prototype SpW RMAP status register reading

A.1 Reset synchronizer block diagram

55
56
57

List of Tables

4.1 SpW2SPI bridge register memory mapping 22
4.2 SpW2SPI bridge SpaceWire communication status register flags 22
4.3 SpW2SPI bridge SPI communication status register flags 22
4.4 SpW2SPlbridgeregisters 23
4.5 SpW2SPIbridge mailboxes Lo 24
5.1 Bit structure of command byte for SPI command interface 28
5.2 Command byte constants for SPI command interface 31
6.1 SpaceWire Tx encoder output token vector structure 43
6.2 SpaceWire Tx encoder output token vector for NULL character 43
6.3 SpaceWire Tx encoder output token vector for FCT character 44
7.1 SpaceWire RMAP read command format 47
7.2 SpaceWire RMAP write command format 48
7.3 Write telecommand mailbox using RMAP command interface 50
7.4 Read OBC status register using RMAP command interface 51
8.1 Microsemi ProASIC3E Starter Kit prototype area summary 59

Nomenclature

CPHA
CPOL
CRC
DDR
FIFO
FPGA
FSM
GRLIB
/0

IP
LEWIS
LSB
LSb
LVTTL
MISO
MOSI
MSB
MSb
NoC
PLL
RAM
RMAP

Rx

Clock PHAse

Clock POLarity

Cyclic Redundancy Check
Double Data Rate

First In First Out

Field Programmable Gate Array
Finite State Machine

Gaisler Research LIBrary
Input/Output

Intellectual Property

Low Energy Wireless Imaging System
Least Significant Byte

Least Significant bit

Low Voltage Transistor Transistor Logic
Master In Slave Out

Master Out Slave In

Most Significant Byte

Most Significant bit
Network-on-Chip

Phase Locked Loop

Random Access Memory

Remote Memory Access Protocol

Receive

SNUG
SoC
SPI
SpW
TC
™
Tx

VHDL

Synopsys Users Group
System-on-a-Chip

Serial Peripheral Interface
SpaceWire

TeleCommand

TeleMetry

Transmit

VHSIC Hardware Description Language

10

Chapter 1

Introduction

1.1 Context

The current thesis work is performed in the context of LEWIS—a project in the frame of
the Technology Research Programme (TRP) [2] of the European Space Agency (ESA). Be-
ing established in direct negotiation between ESA and the Space Exploration Institute (Space-
X) [3] LEWIS aims to evaluate the feasibility and reliability of using low-energy wireless cam-
eras for space applications. The rationale behind this endeavour is that there are certain use
cases in space, e.g. long-reach robotic arms, where wireless connectivity could prove superior
to a wired one. Figure 1.1 illustrates one such use case where a spacecraft is missioned to
collect samples from the surface of a space object, e.g. an asteroid. In order to allow better
control of the sampling process a camera is placed close to the sampling site. As seen in the
illustration, the moving parts of the long-reach robotic arm can make it problematic to use a
wired connection to communicate with the camera. Instead, by applying a wireless solution
this routing problem can be avoided altogether.

spacecraft

.

() wireless access point

robotic arm [2 meters] fj

v U '@D wireless camera

e
<

sampling mechanism

Figure 1.1: LEWIS use case example

11

1.2 Scope

Figure 1.2 illustrates the scope of the current thesis work while using a color code to emphasize
this scope in the context of the general goal of the LEWIS project carried out in the Space
Exploration Institute (Space-X).

Starting from the contextual perspective the presented illustration depicts two entities wishing
to communicate with each other, i.e. the on-board computer (OBC) of a spacecraft on the
right, and the microcontroller (MCU) of a wireless access point on the left. The illustration
intentionally underscores that these entities use different communication interfaces, i.e. SPI vs.
SpaceWire RMAP. Consequently, there has to be an entity in-between that could bridge this
communication gap between them. This communication gap is finally filled by SpaceWire to
SPI bridge designed in VHDL and implemented on a Microsemi ProASIC3E FPGA board, thus
transitioning the perspective to the scope of this thesis work.

Wireless access point microcontroller

[SPI master @12.5 Mbit/s]

Microsemi ProASIC3E
)

D s | FPGA [ssw| <> L/

() Spacecraft
on-board computer

() [SpaceWire RMAP initiator @100 Mbit/s]
Wireless cameras

Figure 1.2: General goal of the project in the Space Exploration Institute (Space-X)

As highlighted by the presented illustration there are two major objectives in the scope of this
work:

1. To provide SPI slave connectivity;

2. To provide SpaceWire RMAP target connectivity.

It is important to understand, however, that these objectives are not equal in complexity. SPI
is a very simple communication protocol, whereas SpaceWire is a far more elaborated com-
munication technology standardized by the European Cooperation for Space Standardization
(ECSS) [4]. This difference in complexities should be kept in mind during the analysis of the
candidate design architectures.

12

1.3 State of the Art

1.3.1 Space Project Regulations

In general space projects are strictly regulated by the rules imposed by such organizations as
the European Space Agency. Therefore, any development process carried out in terms of such
projects needs to comply with the corresponding standards, e.g. [5] [6]. While following these
guidelines a significant amount of documentation needs to be created up front. As such, this
may seriously slow down the current thesis work.

1.3.2 SpaceWire RMAP IP Core Availability

According to the European Space Agency (ESA) [7] the SpaceWire RMAP IP cores that are
available [8] [9] require a license to be used. Moreover, these IP cores are meant to be used
with AMBA bus interconnect typical for a system-on-a-chip system design. Even though one
such licensed IP core is provided to Space-X, it may still be required to have a good in-depth
understanding of the respective implementation methods in case there will be a need for some
customization. With single exceptions [10] the SpaceWire standard document [4] remains the
only source containing detailed description of this technology.

1.3.3 Microsemi Community

The requirement imposed by Space-X to target a Microsemi FPGA adds a certain portion of
challenge to the current work. The reason lies in the following—since Microsemi owns only a
small share of the FPGA market compared to Xilinx and Intel [11], the corresponding commu-
nity is equally small. This means that the availability of important resources, such as technical
documentation and various tutorials, is rather limited which consequently increases the potential
learning curve.

1.4 Thesis Outline

Chapter 2 defines the requirements for this work. Every requirement is followed by a brief
rationale behind it.

Chapter 3 starts with an overview of the design under analysis. After that, two possible design
architecture options are presented with their respective analysis and resolution.

Chapter 4 presents the design proposed for the SpaceWire to SPI bridge module. The chap-
ter goes into detail regarding the memory structure of the bridge and demonstrates the block
diagrams of its main submodules.

Chapter 5 first gives a brief overview of SPI protocol. After that, it defines SPI command
interface of the designed SPI slave controller. Finally, this controller along with its submodules
is demonstrated using block diagrams with their respective explanations.

In the beginning of Chapter 6 the reader learns the essential bits of information regarding
SpaceWire followed by the protocol implementation details in this particular work. Afterwards,
the chapter guides the reader through the proposed design of the SpaceWire codec.

13

Chapter 7 starts with an overview of SpaceWire RMAP given from the perspective of the current
work. Thereafter, a command interface based on RMAP is defined and the corresponding usage
examples are given. Finally, the proposed design of the RMAP target controller is presented.

Chapter 8 describes the prototyping process on the given Microsemi ProASIC3E FPGA board.
In the end, the results of this work are presented.

14

Chapter 2

Requirements

2.1 SPI Slave Connectivity

The design shall provide SPI slave connectivity operating with the serial clock frequency of 12.5
MHz

SPI is quite an obvious choice for establishing a connection between a microcontroller and a
peripheral. This serial protocol is simple and sufficiently fast. Based on the capabilities of the
microcontroller used in Space-X for the current project, it was defined that the SPI slave shall
operate with the serial clock frequency of 12.5 MHz.

2.2 SpaceWire RMAP Target Connectivity

The design shall provide SpaceWire RMAP target connectivity operating with the possible fre-
quency range of 10 to 200 MHz

Since one of the communication sides is an on-board computer of a spacecraft, the requirement
to provide SpaceWire RMAP connectivity is quite natural. As this on-board computer acts as
the master, or initiator, of the communication, the designed system, therefore, is required to take
the role of the RMAP target. What regards the frequency of the SpaceWire communication then
there is a certain degree of freedom allowed as it may depend on the achievable implementation
results.

2.3 Microsemi ProASIC3E Starter Kit FPGA

The design shall be implemented on a Microsemi ProASIC3E Starter Kit FPGA

This requirement was imposed by Space-X due to the fact that the current work is part of a
space project, and thus radiation tolerance is a critical aspect. The given Starter Kit is a com-
mercial equivalent of a radiation tolerant Microsemi RT ProASIC3 FPGA device [12]. Since
the latter is sold only as a chip, it was quite natural for Space-X to select an equivalent device,
i.e. ProASIC3E, which is conveniently sold as a kit, i.e. a complete FPGA board ready for

prototyping.

15

Chapter 3

Design Under Analysis

To help analyzing the scope of the current work from a schematic perspective Figure 3.1 dis-
plays the global block diagram of the design under analysis. The separation of responsibilities

in this block diagram can be applied as follows:

e The bridge module is responsible for initialization, or configuration, of the other modules
in the system plus it controls the authorization of data access requests coming from the

link controllers;

e The link controllers, i.e. the SPI slave and the SpaceWire RMAP target, manage their

corresponding communication links;

e The memory controller in its turn manages the memory operations, such as reading and

writing;

e The memory is an on-chip memory.

dout+ dout- sout+ sout- din+ din-

sin-

o TTT T

SPACEWIRE RMAP TARGET CONTROLLER

T |

auth, init wr cmd rd reply

A

A

T T

auth, init wr cmd rd reply

l |

MEMORY

SPI SLAVE CONTROLLER

i
i
i
i
i
i
i
i
i
i
I BRIDGE |[«——init—» MEMORY CONTROLLER
i
i
i
i
i
i
i
i
i
i

Figure 3.1: Global block diagram of design under analysis

16

3.1 Double Slave Feature

The global block diagram presents the designed system as a slave on both sides, i.e. the slave
on the SPI side and the target on the SpaceWire RMAP side. Indeed, by making the system a
double slave the design and implementation of such system becomes significantly simpler. For
instance, in terms of SpaceWire RMAP it is sufficient to implement only a limited portion of
the target functionality to meet the system functional requirements. Moreover, the double slave
design fits more properly into its context as the SPI communication of the MCU can run at a
greater frequency (12.5 MHz vs. 4.168 MHz) when the MCU acts as the master [13, "Feature
Summary"]. Figure 3.2 depicts a sequence diagram that demonstrates a communication exam-
ple of the double slave system design. It is seen from this diagram that both the MCU and OBC
periodically read the status of the SpW2SPI bridge to find out when the latter is ready to accept
or provide new data.

sd SpW2SPI Bridge double slave communication example)

MCU SpW2SPI Bridge OBC

1: read status bit tc_rdy

2:read status bit tc_valid

3: write telecommand

4:read status bit tc_valid

5: read telecommand

6: read status bit tm_valid

7: read status bittm_rdy

8: write telemetry

9: read status bit tm_valid

10: read telemetry

]
e e = e S e S

Figure 3.2: Sequence diagram of design under analysis

3.2 System-on-a-Chip Architecture

While having the kind of global block diagram as illustrated in Figure 3.1, it may seem like
a good choice to use system-on-a-chip architecture for this design. However, a number of
important aspects must be first examined before choosing this type of architecture.

17

3.2.1 Overview

The definition of a system-on-a-chip architecture in the current context is presented in Fig-
ure 3.3. As can be seen this architecture has a processor, a system bus and the required modules
connected to that bus.

PROCESSOR

[LEON3, CORTEX-M1]

BUS INTERCONNECT [AMBA, WISHBONE]

BUS CONTROLLER

BRIDGE APP

MEMORY «—» MEMORY CONTROLLER

SPACEWIRE RMAP TRGT [« LVDS

SPI SLV — SPI

Figure 3.3: System-on-a-chip architecture of design under analysis

The notes regarding the presented block diagram are the following:

e SpW2SPI bridge application could be done in software which would reside somewhere
in the memory and be executed by the processor. Provided that all the other necessary
modules, i.e. the link controllers, are available as third party IP cores, the development
process could allow rapid prototyping of the required functionality.

e The processor could be a space-certified LEON3 soft-core processor from the Gaisler Re-
search Library [14] or a Cortex-M1 soft-core processor to simply make a fast prototype.

e The most obvious choice for the bus interconnect in this case would be AMBA [15].

3.2.2 Applicability

Even though the analyzed SoC architecture could facilitate the scalability and maintainability of
the design, the application of this architecture to the current design has a few serious drawbacks.

3.2.2.1 Design Redundancy

Having software parts running on a processor may be useful to speed up the development pro-
cess and facilitate scalability. However, this kind of design architecture is completely redundant
for the current project. The scope of this work is simply to translate, or adapt, messages as they
pass from one communication interface to the other, hence a ’full blown’ processor, such as
LEON3, cannot be justified for such a trivial task.

18

3.2.2.2 Support by FPGA Tools

The Libero SoC development tools [16] provided by Microsemi do not offer any system-on-
a-chip work flow support when the selected FPGA device is ProASIC3E (the required FPGA
device for this project). That is, all the required tools, such as the System Builder, become
unavailable in the development environment. Therefore, without such support it becomes very
impractical to use this type of architecture for the current design.

3.2.3 Resolution

The current analysis has shown that the power of rapid prototyping inherent to system-on-a-
chip designs relies heavily on the support by the tools. The lack of such support, as in this
case, can make the development process as complicated as developing everything from scratch.
Moreover, there are actually cases where the possibility to deliver some working result fast may
not be the best solution. As such, this type of architecture was deemed inapplicable to this
design.

3.3 Non System-on-a-Chip Architecture

3.3.1 Overview

Figure 3.4 displays the block diagram of a purely hardware architecture. It can be noticed that
there are no extra modules on this diagram, only the ones that are directly required to provide
the requested functionality of the system.

> RAM CTRL -

A
\

.

B 1]

data RAM CTRL - data

| 1 |

SPISLV CTRL [«—auth—» BRIDGECTRL [«—auth—» RMAPTRGT CTRL

i | i |

A

\

\

X tx X tx
SPI SPACEWIRE
n cs sclk mos miso din sn dout sout

Figure 3.4: Non system-on-a-chip architecture of design under analysis

19

3.3.2 Applicability

Keeping in mind what was said in Section 3.2.2, there are generally no limitations for a purely
hardware design in terms of this project. However, some important design decisions still need
to be made.

3.3.2.1 SpaceWire RMAP IP Core

Since the SpaceWire RMAP IP core provided to Space-X by ESA relies on a bus interconnect, it
is not directly applicable to this type of architecture. Even though the source code of the IP core
was available, its examination showed that stripping the AMBA interface from the core would
not be an easy task as the RMAP part of the core lacked the desired modularity. Therefore,
it was decided that a new SpaceWire RMAP IP core should be developed specifically for the
current project.

3.3.3 Resolution

The non system-on-a-chip, or purely hardware, architecture was chosen as it satisfies the needs
of this project and does not have any serious drawbacks.

20

Chapter 4

SpaceWire to SPI Bridge Design

4.1 Overview

Having chosen the architecture of the design in Section 3.3, the block diagram of the SpaceWire
to SPI, or SpW2SPI, bridge is easy to derive—see Figure 4.1.

> RAM CTRL -

A
A4

+—dJata—» o -——Cdata—»

A
\ 4

> RAM CTRL -

A

auth——— > BRIDGECTRL [« auth

\/

Figure 4.1: SpW2SPI bridge block diagram

The presented block diagram is quite self-explanatory on the top level—the bridge controller
authorizes data access requests from both links, while the RAM controllers handle the subse-
quent data memory operations.

The SpW2SPI bridge memory, which is not shown on the presented block diagram, nevertheless
plays an important role in the functionality of the design. The structure of this memory, or its
mapping, requires a thorough explanation.

4.2 Memory Mapping

One of the main responsibilities of the SpW2SPI bridge is to temporarily store data as it passes
from one client to the other. Therefore, a memory structure has to be defined which shall 1)
temporarily store the passed data and 2) allow the clients to access this data by addressing the
corresponding regions of the defined memory structure. This section focuses on the second
aspect, i.e. the elaboration of the memory structure through the process of memory mapping.

The memory mapping of the SpW2SPI bridge is divided into two classes:

21

1. Registers;

2. Mailboxes.

The rationale behind this kind of division—different responsibilities of the mapped regions.
These responsibilities are explained in Sections 4.2.1 and 4.2.2.

4.2.1 Registers

The registers are mapped into the memory in a straightforward manner which is illustrated in
Table 4.1. By looking at this memory mapping there are two things that become evident. The
first one is that the registers serve as various status indicators, e.g. a one-byte status register
which holds information relevant for the SpaceWire side communication. Hence the responsi-
bility of this memory mapping class—status indication.

Table 4.1: SpW2SPI bridge register memory mapping

| Byte # | 0 \ 1 \ 2 3 K 30 |

’ Name ‘ spw_comstat ‘ spi_comstat ‘ tc_sizel ‘ tm_size! ‘ lewis_features! ‘

! These registers are placeholders reserved for future use.

The second one is the register addressing scheme. The memory in the SpW2SPI bridge is byte
addressable. Hence, a single register shall occupy one byte at the least even if the status infor-
mation it holds has only a couple of meaningful bits. The extra space in this case is reserved for
future use. Tables 4.2 and 4.3 present the definition of the two most important status registers.

Table 4.2: SpW2SPI bridge SpaceWire communication status register flags

Bit # 1 0
Name reserved tc_rdy tm_valid
Access R R R
@Reset 0 0 0

tm_valid This flagis set when the telemetry mailbox is valid to be read from the SpaceWire
side, it is reset otherwise.

tc_rdy This flag is set when the telecommand mailbox is ready to be written from the
SpaceWire side, it is reset otherwise.

Table 4.3: SpW2SPI bridge SPI communication status register flags

Bit # 1 0
Name reserved tm_rdy tc_valid
Access R R R
@Reset 0 0 0

22

tc_valid

tm_rdy

This flag is set when the telecommand mailbox is valid to be read from the SPI
side, it is reset otherwise.

This flag is set when the telemetry mailbox is ready to be written from the SPI
side, it is reset otherwise.

Finally, Table 4.4 summarizes the registers defined in the Spw2SPI bridge.

Table 4.4: SpW2SPI bridge registers

Address | Name ‘ No. bytes ‘ SPI access ‘ SpW access ‘ Description
0 Spw_comstat 1 NA R SpaceWire communication status
1 spi_comstat 1 R NA SPI communication status
2 tc_size 1 R NA TC mailbox data size in bytes
3 tm_size 2 NA R TM mailbox data size in bytes
5 lewis_features 24 \%% R LEWIS features

4.2.2 Mailboxes

There are two mailboxes in the proposed design of the SpW2SPI bridge, i.e. one for the telecom-
mand data and the other one for the telemetry data. The address space of these mailboxes is
differentiated from the normal directly accessible memory space. That is, each mailbox has
an internal base pointer which determines where in memory the mailbox memory is mapped.
This pointer is of no concern to the client, and the latter uses the mailbox address to address a
concrete mailbox. Figure 4.2 illustrates this idea.

MEMORY

MAILBOX CTRL

| ADDR

| BASE_PTR
| CURR_PTR
|

|

MAX_SIZE
DATA_SIZE |

Figure 4.2: SpW2SPI bridge mailbox memory mapping

The fields of the mailbox as illustrated in Figure 4.2 are defined as follows:

23

addr The address of the mailbox used by the client to address this mailbox. Note that
this address does not directly point to any memory space, this address serves as
an identifier.

base_ptr The internal base pointer that determines where in memory the mailbox mem-
ory is mapped.

curr_ptr The current pointer to the mailbox memory used internally while performing
read or write operations.

max_size The maximum size of the mailbox as defined in its corresponding specification
(see Table 4.5).

data_size The size of the data currently held in the mailbox. This field is queried when
starting a read operation and updated internally after a successful write opera-
tion.

The encapsulation of the mailbox memory mapping gives certain flexibility—any future changes
to where and how the mailbox memory is mapped will not affect the client. Thus, this approach
leaves the client with very few things to worry about—the address and the maximum size.
Provided that these are correct, the client is free to transfer a chunk of data, or a mail, to the
other side of the communication channel. Hence the responsibility of this memory mapping
class—transfer of data chunks, or mails.

Finally, Table 4.5 summarizes the mailboxes defined in the SpW2SPI bridge.

Table 4.5: SpW2SPI bridge mailboxes

| Address | Name | Max no. bytes | SPIaccess | SpW access | Description |

0 tc_data 32 R W TC mailbox
1 tm_data 2048 \% R TM mailbox

4.3 Bridge Controller

The logic of the SpW2SPI bridge controller as seen in Figure 4.1 is quite straightforward. The
controller authorizes requests from both link sides to access the memory data. Once the request
from one of the sides is authorized the controller configures the corresponding RAM controller
for the data access. Additionally, the controller configures the (de)multiplexing logic so that the
right data could flow to the right place. The controller may reject an authorization request for a
number of reasons, including wrong memory access addresses and unavailable data resource.

4.4 RAM Controller

There are in fact two types of RAM controllers—one for each type of the memory mapping:

1. Mailbox RAM controller;

2. Register RAM controller;

24

4.4.1 Mailbox RAM Controller

Figure 4.3 shows the block diagram of the mailbox RAM controller. The first thing that becomes
apparent here is the 2-slot memory buffering. Whenever new data is successfully written, or re-
ceived, into one of the slots while the other slot is empty, the slots are switched. This way the
mailbox is immediately ready to receive new data. Provided that the data is read from the mail-
box at the same rate or faster, the mailbox potentially gains a channel of 100% write through-
put [17, "Full-Bandwidth 2-Slot Elastic Buffer"]. Once again, this holds on one condition—the
data must be read from the mailbox at the same rate it is written or faster. This scenario can
be applied to the case in which the MCU writes many packets of telemetry through a slow
SPI connection, while the OBC quickly reads these packets out through a faster SpaceWire

connection.

rx config

RAM SLOT #0

databyte—» RXFSM —»

RAM SLOT #1

N

L]
[

A

A

RAM SLOT SWITCH FSM

> tx sat

TX FSM

—» data byte

A

A

Figure 4.3: Spw2SPI bridge mailbox RAM controller

4.4.2 Register RAM Controller

The register RAM controller is in fact very primitive. The register simply reflects data, e.g. a

status, that originates from some other entity, such as a mailbox RAM controller.

25

Chapter 5

SPI Slave Controller Design

5.1 Protocol Description

Serial Peripheral Interface (SPI) is a synchronous full-duplex serial data protocol often used by
microcontrollers to communicate with one or more peripheral devices over short distances. In
SPI the microcontroller acts as the communication master which controls the peripheral devices,
i.e. the slaves. The protocol uses separate clock and data wires, along with a select wire to let
the SPI master communicate with a particular slave device. This wiring scheme allows making
the clock and data wires common to all the devices while keeping only the select wires specific
to each peripheral device. This concept is illustrated in Figure 5.1.

SPI SCLK » SCLK SPI
MASTER MOS » MOS| SLAVE
MISO » MISO
n_SSO » n_SS

n_SS1
» SCLK SPI
» MOS| SLAVE
» MISO
» Nn_SS
Signal notes:

» SCLK aserial clock signal sent from the master to al the daves

» MOS adataline from the master to all the daves, named Master Out Save In
» MISO adataline from the daves to the master, named Master In Slave Out

» n_SS an active low dave select signal for each dave

Figure 5.1: SPI master slave wiring scheme

The fact that in SPI the clock signal gets delivered from the master to the slave makes the
communication synchronous as this clock signal effectively keeps both sides in sync. By having
this kind of synchronization both the master and slave are able to know exactly when to serialize
and sample bits on the data lines. However, since SPI is a rather loose communication protocol,
there are certain variations regarding this aspect. Namely, there two parameters—clock polarity

26

and clock phase [18]—that give four possible combinations to configure the timing of the data
lines respective to the serial clock.

SPI does not define any communication speed limits, and various implementations often go over
10 Mbit/s. However, the speed usually depends on the capabilities of a concrete slave device,
and these capabilities must be checked in the datasheet of the device in order to configure the
SPI master properly.

Finally, the fact that SPI protocol is both simple and loose allows every peripheral device
to specify its own command interface that suits this device best. Again, the corresponding
datasheets must be consulted prior to interfacing such devices.

5.2 Protocol Usage Considerations

5.2.1 Clock Polarity and Phase

The designed SPI slave uses the following parameters for the serial clock polarity and phase:

CPOL 0
CPHA 0

The corresponding timing diagram for the selected parameters’ settings can be observed in
Figure 5.2. The timing diagram shows the following:

e CPOL parameter set to 0 assigns the serial clock level when this clock is not active to 0
as well. In its turn this means that the leading edge of the serial clock will be the rising
edge (note the arrows on the serial clock wave).

e CPHA parameter represents the shifting of the data capturing phase. By setting CPHA to
0 the data is captured on the leading edge of the serial clock. Since the leading edge is
already defined to be the rising edge by CPOL parameter, the data will be captured on the
rising edge of the serial clock. This naturally means that the data must be propagated on
the falling edge of the serial clock in order to be stable during the next capturing phase.

n_cs —\ /—

mosi 74 1 X 2 X3 X4)5 6 X7 X8 ¥/
miso 7% 1 X2 X3 X4) X5 6 X7X8

Figure 5.2: CPOL and CPHA parameters used by SPI slave controller

5.2.2 Serial Clock Frequency

As defined by the requirements in Section 2.1, the designed SPI slave controller shall support
serial clock frequency of 12.5 MHz. Figure 5.3 illustrates the timing criteria corresponding to
the required serial clock frequency.

27

n_cs —\ u © /—
sclk 1]

mosi) 1 X 2 2772220777777

miso . 2222 1 X 2 2772227777777

Figure 5.3: Serial clock frequency supported by SPI slave controller

5.2.3 MSbD first vs. LSb first

Since SPI protocol allows sending data with either the most significant bit first or the least
significant bit first, the designed slave controller shall send and receive the data with the most
significant bit first. Figure 5.4 illustrates this definition by showing the corresponding bit se-
quence when sending a byte of data.

n_cs —\ /7
mosi 7\ D7 X D6 X D5 X D4 X D3 X D2 X D1 X DO X/

miso

Figure 5.4: Most significant bit sent first during byte transmission over SPI

5.3 Command Interface

Having defined the memory structure of the SpW2SPI bridge in Section 4.2, a corresponding
SPI command interface can now be defined as well. The command interface shall support two
types of operations:

1. Read operation;

2. Write operation.

The type together with the address defines a concrete command. These two pieces of informa-
tion are encoded in the command byte—the first byte sent by the SPI master. Table 5.1 presents
the bit structure of the command byte.

Table 5.1: Bit structure of command byte for SPI command interface

MSb LSb
7 5 4 3 2 0
reserved Wr addr_ext addr

reserved The purpose of this reserved three-bit field is to support the reset signal practice
used in the current work (see Appendix A.1).

28

wr This one-bit field defines the type of the operation. When it is set it defines a
write operation, otherwise it defines a read operation.

addr_ext This bit allows differentiating between addressing the mailboxes and the reg-
isters in the SpW2SPI bridge. Setting this bit allows addressing the mailbox
memory region in the SpW2SPI bridge. Resetting this bit allows addressing the
registers in the SpW2SPI bridge.

addr The three bits in this field form an address capable of addressing all the required
memory data structures as defined in Section 4.2. Depending on the value of
addr_ext bit the addressed memories can be either the five registers specified
in Table 4.4 or the two mailboxes specified in Table 4.5.

5.3.1 Read Command Interface

The way the read command interface is designed is illustrated in Figure 5.5.

n_cs _\ // /—
wc_ [UUUUUUUUU VU U UUU ULV U U WU U WU U U U U WU U U LU U

mosi m(rdemd_byte X dummy_byteO X dummy_byte1 W
miso 77777777 rasize bye X databves X . Y7777

Figure 5.5: Data read from SpW2SPI bridge through SPI

This timing diagram shows that when the SPI master performs the reading then the read com-
mand must be followed by two dummy bytes instead of the read size. There is a couple of
reasons behind this design decision. Firstly, there is an assumption that the read size is known
beforehand, e.g. the maximum size is known from the specification presented in Section 4.2,
while the current size can be read from the corresponding register during run-time. Secondly,
the dummy bytes are important to give the slave application enough time to perform the required
data fetching and its subsequent synchronization into the serial clock domain.

Additionally, the presented timing diagram shows that the first byte transmitted by the slave
over the MISO line is the size of the returned data. This becomes very useful when the master
requests the maximum number of bytes and then simply looks at the returned size to determine
the size of the true data.

5.3.2 Write Command Interface

The operation of the write command interface is illustrated in Figure 5.6.

n_cs _\ // /_
s U U LU U U U U U U U U U U UL UL

mosi m wrcmd_byte X wrsize_MSB X wrsize_LSB X data_byte0 X data_byte1 X //W
miso . A

Figure 5.6: Data write to SpW2SPI bridge through SPI
The most important observation taken from the presented timing diagram is that the SPI master

must specify the size along with the data when performing the write command. This kind
of design was chosen as it is more concise compared to another option in which the master

29

performs the write operation in two steps: 1) writes to the corresponding size register and
2) writes the according amount of data. The latter design option was found to be redundant.
Finally, the sent size allows the slave controller to immediately check that there is enough space
to accept the written data.

5.3.3 Examples of Command Interface Usage

Figure 5.7 demonstrates how the SPI master writes two bytes of telemetry—bytes 0xCA and
OxFE—to the SPI slave by using the defined command interface. The decomposition of this
timing diagram is as follows:

e The value 0x19 of the command byte is decoded the following way:

— wr bitis set (1) to indicate a write operation;

— addr_ext bit is set (1) to address the mailbox memory region of the SpW2SPI
bridge;
— addr bit field is set to 001b to address the TM mailbox (see Table 4.5).

e The size of the telemetry, i.e. value 2 in this case, is transmitted as two bytes with the
most significant byte, byte 0x00, being transmitted first and the least significant byte, byte
0x02, being transmitted second.

e The data bytes, bytes 0xCA and OxFE, are transmitted after the two bytes of size.

n_cs _\ /__
mosi - 7 0x19 X 0x00 X 0x02 X O0xCA X OXFE Y2777
miso 7 7 7 7

Figure 5.7: Write telemetry using SPI command interface

The command interface allows reading the SPI communication status register as demonstrated
in Figure 5.8. The key points of this example are:

e The value 0x01 of the command byte is decoded as follows:

— wr bit is cleared (0) to indicate a read operation;

— addr_ext bitis cleared (0) to address the register memory region of the SpW2SPI
bridge;

— addr bit field is set to 001b to address the SPI communication status register (see
Table 4.4).

e The value of the dummy bytes is not used, it is set to 0x00 in this example.

e The first byte transmitted by the SPI slave through the MISO line is the size of the status
register. Since the latter is a one-byte register, the value of the transmitted byte is 0x01.

e The last byte transmitted by the SPI slave represents the contents of the status register. In
this particular example it is assumed that this value is 0x02.

30

n_cs —\ /_
<k Uiy e
mosi - 72224 0401 X 0x00 X 0x00 20777777777,
miso 0) 0x01 X 0x02 4

Figure 5.8: Read SPI communication status using SPI command interface

5.3.4 Take-Away Points

When writing to the SPI slave using the command interface, as exemplified in Section 5.3.3,
the number of the transmitted data bytes must correspond to the transmitted size value. Any
extra data bytes will be discarded by the SPI slave. Moreover, the maximum number of the
transmitted data bytes must adhere to the specification presented in Section 4.2, otherwise the
whole data sequence transmitted by the SPI master will be discarded.

When reading from the SPI slave, as demonstrated in Section 5.3.3, it is crucial that the SPI
master is aware of the maximum size of the data it wants to read, as this ensures that the master
clocks the slave the proper amount of times. This awareness can be achieved by looking at the
specification presented in Section 4.2.

Finally, Table 5.2 summarizes the important command bytes.

Table 5.2: Command byte constants for SPI command interface

| Command name | Byte |
Write telemetry 0x19
Read telecommand 0x08

Read SPI communication status | 0x01

5.4 Controller Block Diagram

The block diagram of the designed SPI slave controller is presented in Figure 5.9. While ex-
amining the presented block diagram it is important to note the design uses an asynchronous
region for serial communication. The rationale behind this design choice is that the FPGA clock
is only 1.6 times faster than the serial clock. Therefore, there would be significant delays if the
oversampling approach was used. These delays are not that crucial when the SPI master only
writes data to the slave. However, when the master reads data from the slave the delays would
seriously impact the correct operation of the communication.

The presented block diagram can be split into three main parts:

MCUCOM_SPI Capture and propagation of SPI signals;
FIFO Clock domain crossing as well as elastic data buffering;

MCUCOM Encoding and decoding the SPI command interface.

31

ncs stk mos miso

I T T
data byte MCUGOM SA1 data byte

A

— Serial clock domain —

-+- CDCRX FIFO |— —{ === —mimmmmmmmmmmo = — CDC TX FIFO —+-
I FPGA clock domain I
\
databyte data byte
MCUCOM ’
data byte data byte
\i
RX FIFO — — auth — — TX FIFO

rdy/vaid handshakei ldata byte data byteT I rdy/valid handshake

Figure 5.9: SPI slave controller block diagram

5.4.1 Capture and Propagation of SPI Signals

Figures 5.10 and 5.11 depict the capture and propagation of SPI signals, respectively. There are
a few important notes about these circuits, namely:

e Even though the capturing circuit uses a common way of sampling the MOSI input using
a shift register, the least significant bit of the output data byte is taken directly from the
MOSI line. The reason is that the last serial clock cycle must be accommodated to register
the output data byte into the CDC FIFO. Therefore, the least significant bit does not go
into the shift register, but directly into the FIFO.

e The propagation circuit uses a single falling edge flip-flop to synchronize the MISO out-
put following the SPI parameters’ settings defined in Section 5.2.1. Minimizing the num-
ber of falling edge flip-flops is the recommended practice as guided by Reuse Methodol-
ogy Manual [19, "Avoid Mixed Clock Edges"].

mosi

databyte
RX SHIFT

> dav

sclk ——>

Figure 5.10: SPI signal capture circuit

32

data byte —

dav —|

TX SHIFT D Qf—*miso

sclk

Figure 5.11: SPI signal propagation circuit

5.4.2 Clock Domain Crossing

The clock domain crossing was accomplished using an asynchronous FIFO design presented in
SNUG San Jose 2002 paper [20]. The block diagram of the proposed asynchronous FIFO can
be seen in Figure 5.12. Additionally, in order to highlight the important timing features of the
FIFO a timing diagram is depicted in Figure 5.13. This timing diagram demonstrates a simple
scenario in which a 1-slot FIFO is first written from the write clock domain and then read from
the read clock domain. From the perspective of the client code using this FIFO it is important to
note that there is a delay of two clock cycles after deasserting the write or read enable signal and
before being able to observe the properly updated value of the full or empty flag, respectively.
To overcome this timing issue and improve the usability of the module one could implement
the almost full and almost empty flags to augment or even replace the ordinary full and empty
flags. This way, by putting the almost full offset to, say, 4 words, the writer would be able to
write exactly this amount of data first and after that immediately observe the properly updated
almost full flag value.

wr_data rd_data
FIFO_mem

wr_en wr_addr rd_addr rd_en

e —

>
wr_arith rd_arith
wr_full - wr_ptr rd_ptr - rd_mty
- —
rd2wr_ptr_sync i i wr2rd_ptr_sync

[~> < < <
O ()1()} F?r())
wr_clk L] 5 rd_clk

wr_nrsta rd_nrsta

Figure 5.12: Asynchronous FIFO block diagram for SPI controller CDC

33

two clock cycles dela

wr_clk

wr_en

rd2wr_ptr_sync0

rd2wr_ptr_sync1 \ 0 // [I ‘X\ 1

wr_full // [>\

rd_clk J N S D S YY/AEE N N | B N N
wr2rd_ptr_syncO 0 \X—\ // 1
wr2rd_ptr_sync1 0 \%\ // 1

rd_data //////////////// /ﬁO
rd_empty \>\ // /
rd_en // ? /’
rd_ptr 0 // \Px 1

Figure 5.13: Asynchronous FIFO timing diagram for SPI controller CDC

Finally, since the FIFO code found in the paper was written in Verilog, this code had to be
rewritten in VHDL to comply with the current work.

5.4.3 Command Interface Codec

The important aspect of the MCUCOM module, i.e. the SPI command interface codec, is the
timing constraint of the read operation. Due to the fact that SPI protocol in general does not
have any flow control, the slave controller must make sure that the data to be read is put on the
MISO line at the right moment. Figure 5.14 depicts the sequence of events that happen during
the read operation. As can be seen from the presented sequence diagram the time interval
between the bytes received from the SPI link is approximately 640 nanoseconds at the serial
clock frequency of 12.5 MHz. Therefore, the current logic of the codec is designed in such a
way that the reception of the read command byte serves as the trigger to start the authorization
process. In its turn the reception of the first dummy byte serves as the trigger to already transmit
the read data size byte. Consequently, the authorization process must be finished before the first
dummy byte is received in order to have all the required read data ready in advance. This leaves
the authorization process with 640 ns / 25 ns ~ 25 FPGA clock cycles which is more than
enough at the moment. Nevertheless, this may be one of the limiting factors to increase the SPI
frequency above 12.5 MHz, and thus must be paid attention to.

34

sd SPI Read Command Sequence)

MCUCOM_SPI cpe | MCUCOM | |SpWZSPIBridge

H 1: enable com H

I

1.1: com enabled

2:rx rdcmd_byte

N I_J

2.1:rdemd_byte valid

{640 ns} 3:req auth

/I'l'l {~ 640 ns}

4: ack auth |

VA 5: rx dummy_byteO

5.1: dummy_byteO valid

6: tx rdsize_byte

6.1: rdsize_byte valid

H 7:rx dummy_bytel

7.1: dummy_bytel valid

Figure 5.14: SPI slave controller timing constraint during read operation

35

Chapter 6

SpaceWire Codec Design

6.1 Protocol Description

SpaceWire is a serial communication technology defined by the European Cooperation for
Space Standardization (ECSS) Standard ECSS-E-ST-50-12C [4]. According to Microsemi [21,
"SpaceWire Coding and Signaling Overview"] this communication technology “provides a
unified, high-speed data-handling infrastructure for connecting sensors, processing elements,
mass memory units, down-link telemetry subsystems, and electrical ground support equipment
(EGSE)”. The mentioned infrastructure nodes are interconnected using short distance point-to-
point links that operate in full-duplex mode with a data rate from 2 Mbit/s to 400 Mbit/s.

SpaceWire uses a synchronous data communication which means that a clock signal must be
passed from the transmitter to the receiver. However, instead of having the clock signal itself
as a separate wire, e.g. like in SPI, SpaceWire uses data/strobe encoding to recover the clock
from the received signals. This encoding technique, therefore, dictates that SpaceWire has two
main signal wires (omitting the LVDS details for now)—the data and the strobe. While the data
signal directly follows the data bit-stream, i.e. the data signal is high when the data bit is 1
and low when the data bit is 0, the strobe signal changes its state whenever the data remains
constant. This allows recovering the clock signal from these two wires alone using a simple
XOR operation. Figure 6.1 illustrates this clock recovery technique. As noted by P. Walker
and B. Cook [22, "Data-Strobe encoding"] this technique “is one of the contributing factors in
SpaceWire being a simple, digital, circuit, without needing analog electronics”.

Data bitstream % 0 X 1 X 1 X 1 X 0 X 1 X 0 X 0)W
D] L
s__ [1L N

Recovered clock +_+ + + + + +_+

Figure 6.1: SpaceWire DS encoding technique

As briefly mentioned above, SpaceWire uses low voltage differential signaling (LVDS) [23] for
the data and strobe signals at the physical layer which gives SpaceWire the fault tolerant prop-
erties of LVDS [24]. Figure 6.2 illustrates SpaceWire LVDS signaling schematic.

36

D+

D+
i BN

SpW Link Interface

P

S+ S+
strobe—»| ——strobe—»

S S

Figure 6.2: SpaceWire LVDS signaling

On the exchange level SpaceWire defines a number of link- and normal-characters [4, "Link-
characters and normal-characters"] which have their specific responsibilities—to keep the link
alive and to carry user data, respectively. Therefore, beside its main purpose to encode and
decode user data characters as they are being transmitted from one SpaceWire node to the other,
a SpaceWire codec dedicates a large portion of logic to keeping the corresponding SpaceWire
link up and running. The latter involves the link initialization sequence, flow control, error
detection and recovery logic.

6.2 Protocol Usage Considerations

6.2.1 SDR vs. DDR

There are SpaceWire codec implementations [25, "Single Data Rate (SDR) and Double (or
Dual) Data Rate (DDR) bit-stream encoding"] that “allow[] the user to select SDR or DDR
encoding for the transmitted bit-stream”. The designed codec, however, shall support only
DDR configuration for its transmitted bit-stream.

6.2.2 Data Signaling Rate

The maximum data signaling rate supported by the designed SpaceWire codec shall be set to
100 Mbit/s. Since the data transfer rate has already been defined to be DDR (see Section 6.2.1),
a SOMHz SpaceWire clock will be able to provide the necessary data signaling rate.

6.2.3 Transmitter Clock Generation

The transmission clock of the designed SpaceWire codec shall be a phase locked loop multi-
ple of the local FPGA clock. The advantage of using a PLL is that the latter provides a more
robust clock source for the SpaceWire transmitter circuit. From the perspective of the design
integration, however, this decision forces the corresponding transmitter clock generation com-
ponent to be external to the main codec design which can be viewed on the global block diagram
presented in Section 6.3.

6.2.4 Receiver Clock Recovery

The receiver clock shall be recovered by simply XOR’ing the data and strobe signals. No
additional filter circuits shall be designed to ensure glitch-free recovered clock [21, "RTG4

37

D QfDbRsye—D Q—DR

» D Ql—DF_sync D QF——pDF

Rx_clock

Figure 6.3: SpaceWire receiver clock and data recovery logic

SpaceWire Clock Recovery Block Overview"]. Figure 6.3 illustrates a basic way to design the
SpaceWire clock and data recovery circuitry. Even though simple this circuitry can pose serious
challenges related to the placement of these components inside the FPGA chip. However, since
the design in this work uses a relatively slow SpaceWire clock defined in Section 6.2.2, it is
possible to achieve adequate clock recovery results by properly constraining the placement and
routing process.

6.2.5 Time-Code Support

The Time-Code as defined by the SpaceWire standard [4, "Control characters and control
codes"] shall not be supported. The reason is that this functionality was not needed for the
current project.

6.3 Global Block Diagram

Figure 6.4 depicts the global block diagram of the designed SpaceWire codec. The necessity
to present the design from a global point of view is related to the specific partitioning inherent
to this design—certain components, e.g. the receiver clock recovery as well as the transmitter
clock generation, have been made external to the core of the codec. There is a couple of reasons
behind this design decision. Firstly, it is usually more preferable to implement such components
like DDR registers by using of the primitives provided by the concrete FPGA. Secondly, using
a PLL to create the required SpaceWire transmitter clock is again a more preferable solution as
in this case the synthesis tool makes sure that the generated clock signal resides on the dedi-
cated high speed global bus. Finally, there is a certain flexibility with this kind of partitioning
approach. Namely, the SpaceWire receiver clock recovery is currently implemented using a
simple XOR operation (see Section 6.2.4). However, later this simple circuit could be substi-
tuted by dedicated clock recovery blocks like the ones provided by high-end FPGA boards [21,
"Using RTG4 SpaceWire Clock Recovery Block"]. Therefore, delegating these responsibilities
outside the core of the codec has its rightful reasons.

38

|:| FPGA device specific component

I:I generic component

data—| DDR OUT — dout
din » DDRIN |——data— T
txclock
——config—
rxclock
SPW CODEC TXCLOCK GEN
~e—txclock—
) | RXCLOCK RCY |—rxclock—» txclock
N ——» ¢
strobe— DDR OUT — sout

n-char l T n-char

Figure 6.4: SpaceWire codec global block diagram

6.4 Core Block Diagram

The core block diagram of the designed SpaceWire codec is presented in Figure 6.5. The
examination of the presented diagram reveals that the proposed design differs from the one
suggested by the SpaceWire standard [4, "Encoder-decoder block diagram"] by a number of
important aspects. The most notable of them are the following:

e The main algorithm of the codec resides totally in the synchronous FPGA clock region.
Therefore, Rx and Tx asynchronous regions can be made very small with no complex
logic inside. This kind of design not only facilitates better synthesis results, but also
allows the developed component to keep the power consumption of the FPGA low.

e The host interface is fully synchronous to the FPGA clock domain. Consequently, no
additional synchronization is needed outside the codec component.

e Transmitter and receiver FIFO’s are placed inside the codec. This way the host is freed
from the responsibility to maintain these buffers.

The proposed design solution is similar to the one presented in a Master’s thesis completed in
Chalmers University of Technology [10]. There are, however, certain differences. The most im-
portant of them being the clock domain crossing technique. As seen in Figure 6.5, the solution
developed in this work uses asynchronous FIFO’s to synchronize data between the FPGA clock
domain and both SpaceWire clock domains. This kind of synchronization scheme was chosen,
because it helps keeping the logic simple. Instead of having numerous complicated synchro-
nization channels it is possible to have just one which operates in a straightforward way. True,
there are constraints related to using a uniform FIFO approach. For example, a FIFO forces to
use a fixed and often the maximum width of the data being synchronized which may not seem

39

din sin dout sout

e

— FW Rx clock domain W Tx clock domain —
-RXCDCHFOf— — == =—mmmmmimmmmmmm oo L= 1 TX CDC FIFO- -
I FPGA clock domain I

TX
I

Iy
rx sample vector tx token vector

Y

| e—ctrl— ——ctrl—»]
RX DECODER SPW CTRL TX ENCODER
——stat—»| [—stal—

Iy
n-char n-char

\ 4

RX FIFO}— — — — TXFIFO

rdy/vaid hdshk I l n-char n-char T I rdy/vaid hdshk

Figure 6.5: SpaceWire codec core block diagram

ideal from the perspective of the FPGA resource usage. It may also be difficult to urgently send
something like a Time-Code if the FIFO is already filled with other data. Nevertheless, the
simplicity of the designed logic was deemed superior for the current work, and therefore the
asynchronous FIFO approach prevailed.

There are also other possible ways to partition a SpaceWire codec design, e.g. to make the whole
design synchronous to the FPGA clock [26]. The fully synchronous solution seems interesting,
but it was not studied thoroughly during this work due to the limited time.

6.5 Rx Pipeline

This section will provide the most essential notes regarding the Rx pipeline as seen in Fig-
ure 6.5 starting from the data/strobe input signals and following the Rx data flow down to the
host interface.

6.5.1 Deserializer

Compared to the receiver circuit proposed in the other Master’s thesis [10, "Receiver"], the
design in the current work adheres to the principle of keeping the Rx block as simple as possible.
Therefore, this design can be illustrated with a simple block diagram presented in Figure 6.6.
The sample vector output observed on the presented diagram has a generic width, i.e. the
number of 2-bit samples that are shifted into the Rx shift register can be easily specified in the
VHDL code. Furthermore, this generic sample vector in its turn determines the data that the
Rx decoder will have to decode in one FPGA clock cycle. All together this generic behavior

40

allows quick adjustments to the Rx pipeline in order to test its support for various SpaceWire
Rx clocks frequencies.

data—» RX DDR RX SHIFT ——» smp vector

——DF—»

rxclock

Figure 6.6: SpaceWire codec Rx deserializer block diagram

6.5.2 Clock Domain Crossing

The clock domain crossing was done using the same approach as explained in Section 5.4.2.
The sample vector—the output of the Rx deserializer—was flattened, or serialized, into a bit
string before being pushed into the asynchronous FIFO. Once synchronized to the other side of
the clock domain boundary the bit string was popped from the FIFO and then deserialized again
into the sample vector—now the input to the Rx decoder.

6.5.3 Decoder

The idea was to design a decoder which could handle a generic width of the Rx data input. Such
design could later prove useful for testing the ability of the codec to support various SpaceWire
Rx clock frequencies. However, such design also proved to be rather challenging both during
the design and implementation phases. Undoubtedly, most of the challenge was caused by a
natural requirement in this case that the generic data input had to be processed in one clock
cycle. As the data kept constantly coming from the receiver, failure to decode it on time would
result in losing this data. Moreover, due to the nature of the SpaceWire character decoding the
pipeline approach did not seem applicable as it would suffer from data hazards on a constant
basis without the possibility to stall the decoding pipeline. Finally, the decoding algorithm had
to be easily scalable to properly support the generic data input.

Figure 6.7 illustrates the state diagram of the decoder FSM that was easily scalable and func-
tionally correct. However, the most important observation here is that each state in this FSM
operated on a 2-bit sample. Any attempts to design an equally scalable and correct FSM that
operates on wider samples failed. This circumstance in its turn posed an implementation chal-
lenge, because the algorithm was supposed to be implemented into hardware, not software. Too
long combinational paths could dramatically slow down the timing of the final hardware.

The solution that offered satisfactory synthesis results was to replicate the above-mentioned
FSM using a VHDL for loop construct by a number of times which corresponded to the generic
number of 2-bit samples contained in an input data vector. Further testing both in simulation
and in hardware showed that the proposed solution was indeed viable.

41

xsmp&& Ish=0

BUF_DATA

rxsmp&&Ilsh=1

rx smp

xsmp && xsmp &&
chk =ok && chk = ok &&
Ish =0 Ish =1

rxsmp && rxsmp &&
chk=ok&& chk=0k &&
Isb =1 Isb =0

ERROR

Figure 6.7: SpaceWire Rx decoder FSM operating on 2-bit samples (smp)

rx smp && chk !'= ok rx smp && chk = ok

6.5.4 Host FIFO

As described in Section 6.4 the Rx FIFO that receives the normal characters from the Rx de-
coder was placed inside the SpW codec, and thus inside the Rx pipeline. Such encapsulation
allows hiding from the client the details of the credit flow handling inherent to SpaceWire link
technology [4, "Flow control (normative)"]. The read interface of the FIFO is exposed to the
client, thus forming the Rx interface of the codec. This interface follows the ready/valid hand-
shake protocol [17, "Link-Level Flow Control and Buffering"].

6.6 Tx Pipeline

The transmission pipeline as seen on the right side in Figure 6.5 shall be described in this
section. The description will start from the host interface and continue following the Tx data
flow up to the data/strobe output signals.

6.6.1 Host FIFO

As noted in Section 6.4 the Tx FIFO that receives the normal characters from the host was
placed inside the SpW codec. Moreover, the corresponding rationale and the interface details
explained and defined in Section 6.5.4 hold for the Tx FIFO as well.

6.6.2 Encoder

Figure 6.8 illustrates the block diagram of the Tx encoder.

The Tx encoder is responsible for the encoding of all the information that is going to be trans-
mitted over the link. This includes the normal-characters as well as the link-characters. Even

42

valid tx token vector

[

TX ENCODER

P

rdy/valid hdshk n-char

ctrl ———»

Stat «—

Figure 6.8: SpaceWire Tx encoder block diagram

though various SpaceWire characters can have different transmission priorities as defined by
the standard [4, "Flow control"], the Tx encoder is completely separated from this responsibil-
ity. The corresponding character prioritization is done in another place, in the dedicated control
logic as seen in the center of Figure 6.5.

Since the encoded data will be further pushed into an asynchronous FIFO for the clock domain
crossing purposes, the data is encoded in a specific, but at the same time uniform way. That is,
the size of the output token vector will always be the same no matter which character is encoded
in that vector. Clearly, such a uniform vector must be able to accommodate the maximum
character to be sent—the 14-bit Time-Code. Hence, the size of this vector is set accordingly.
Moreover, since the size of the payload in the vector can vary, this vector needs to carry an
extra control information. Table 6.1 defines the structure of the vector. It is seen that each token
includes two encoded bits of data and a flag indicating whether this particular token contains
valid data or not. Consequently, the fixed size of the vector is calculated as 14 bits / 2-bit pair =
7 tokens.

Table 6.1: SpaceWire Tx encoder output token vector structure

Token # \ 6 \ 5 \ 4 \ \ 0 ‘
Data MSb | LSb | MSb | LSb | MSb | LSb | MSb | LSb | MSb | LSb
Data valid Boolean Boolean Boolean Boolean Boolean

Table 6.2 demonstrates the token vector containing an encoded NULL character. It is notewor-
thy that all the tokens with valid data are grouped in the left-most part of the vector—this is the
defined encoding behavior of the Tx encoder.

Table 6.2: SpaceWire Tx encoder output token vector for NULL character

Token# | 6 | 5 [4 | 3 [2 | 1 [0 |
Data of1][1[1]o]1][0o]0o]O][O0O]O]O]O]O
Data valid | true | true | true | true | false | false | false

The final important encoding feature worth mentioning here is the encoding of FCT characters.
When a FCT character is encoded, a NULL character is automatically appended after the FCT.

43

The reason is related to the asynchronous nature of the Tx serializer. In the run mode this serial-
izer will be working with a higher frequency, so in order to keep it constantly sending data with-
out unnecessary breaks it was decided to artificially make the encoded FCT character *wider’.
The latter has no negative side effects in terms of the standard protocol. Table 6.3 demonstrates
the token vector containing an encoded FCT character.

Table 6.3: SpaceWire Tx encoder output token vector for FCT character

| Token# | 6 | 5 | 4 | 3 [2 | 1 [0 |
Data oj1[oJofJof1[1]1][0]1][0]O]O]O
Data valid | true | true | true | true | true | true | false

6.6.3 Clock Domain Crossing

The clock domain crossing was done using the same approach as explained in Section 5.4.2.
The token vector—the output of the Tx encoder—was first flattened, or serialized, into a bit
string before being pushed into the asynchronous FIFO. Once synchronized to the other side of
the clock domain boundary the bit string was popped from the FIFO and then deserialized again
into the token vector—now the input to the Tx serializer.

6.6.4 Serializer

The Tx serializer implements a parallel-in-serial-out circuit that shifts the token vectors encoded
by the Tx encoder to output the corresponding DDR data every Tx clock cycle.

6.6.5 Strobe Generator

Listing 6.1 demonstrates the algorithm for strobe generation used in this work. Although the
algorithm is written in pseudocode, the comments should provide clear description in order to
derive the corresponding VHDL code. It can be noticed from the code that the corresponding
Tx strobe module does not use a reset signal, but rather an active high enable signal. The latter
comes from the Tx serializer module. Consequently, this enable signal will be high when there
is data to transmit and low when there is no such data.

44

Listing 6.1 SpaceWire Tx strobe generation algorithm in pseudocode

if en = 0’ then
data_out.dr := '0’;
data_out.df := ’'0’;

data_out := data_in;

if en = 0’ then
safe_dr_rst := data_out.df and strb_out.df;
strb_out.dr := safe_dr_rst;
strb_out.df := '0’";
else
dr := not (data_out.df xor data_in.dr xor
strb_out.dr := dr;
strb_out.df := not (data_in.dr =xor data_in.df =xor
end if;

strb_out.df);

dr

)i

45

Chapter 7

SpaceWire RMAP Target Controller
Design

7.1 Protocol Description

The remote memory access protocol (RMAP) [27] allows a SpaceWire node to write to or read
from the memory inside another SpaceWire node. The protocol is intended to standardize the
way SpaceWire nodes are configured and how they exchange data between each other. For
instance, RMAP can be used to configure a remote camera to take a picture by writing to a
specific memory region inside the camera device. The camera may then write the captured
image data into a known allocated memory region inside a mass memory device. Later the
initiator of the initial request can read this image data from this memory device using RMAP.

There are two types of RMAP commands that are useful for the current work:

1. Read command;

2. Write command.

7.1.1 Read Command

Table 7.1 illustrates the read command format as defined by the RMAP standard [27, "Read
Command"].

7.1.2 Write Command

Table 7.2 illustrates the write command format as defined by the RMAP standard [27, "Write
Command"].

7.2 Protocol Usage Considerations

Based on the requirements of the current work the designed RMAP target controller shall only
provide partial RMAP implementation as defined by the standard [27, "Partial Implementations
of RMAP"]. Therefore, the following list applies:

46

Table 7.1: SpaceWire RMAP read command format

First byte transmitted

Target SpW Address Target SpW Address
Target Logical Address Protocol Identifier Instruction Key
Reply Address Reply Address Reply Address Reply Address
Reply Address Reply Address Reply Address Reply Address
Reply Address Reply Address Reply Address Reply Address
Initiator Logical Address | Transaction Identifier (MSB) | Transaction Identifier (LSB) Extended Address
Address (MSB) Address Address Address (LSB)
Data Length (MSB) Data Length Data Length (LSB) Header CRC
EOP Last byte transmitted
Bits in Instruction field
MSb LSb
increment = 1
reserved=0 | command=1 | read=0 | verifydata=0 | reply=1 reply addr len
no inc =0
packet type command reply addr len

e Initiator functionality shall not be supported as the designed system solution is a target

only device;

e Read-modify-write command shall not be supported as this functionality is not needed
for the current work;

e SpaceWire addressing (previously called path addressing) shall not be supported, only
the logical addressing;

e The write command shall only be supported in the non-acknowledged, non-verified mode
as defined by the standard [27, "Write commands"];

e The increment of the read/write address shall not be supported, because it is not needed
for the current work.

7.3 Command Interface

The command interface describes how the RMAP packet header fields must be used by the
RMAP initiator in order to:

1. Respect the partial RMAP implementation defined in Section 7.2;

2. Comply with the memory structure of the SpW2SPI bridge as defined in Section 4.2.

As the RMAP standard inherently supports read and write commands the command interface
description is a relatively straightforward process.

47

7.3.1

7.3.1.1

When the RMAP initiator, i.e. OBC, issues a read command to the target the Instruction field
of the corresponding RMAP packet header must be set to value 0x48. This value is decoded as
follows (refer to Table 7.1):

Table 7.2: SpaceWire RMAP write command format

First byte transmitted

Target SpW Address Target SpW Address
Target Logical Address Protocol Identifier Instruction Key
Reply Address Reply Address Reply Address Reply Address
Reply Address Reply Address Reply Address Reply Address
Reply Address Reply Address Reply Address Reply Address
Initiator Logical Address | Transaction Identifier (MSB) | Transaction Identifier (LSB) Extended Address

Address (MSB) Address Address Address (LSB)
Data Length (MSB) Data Length Data Length (LSB) Header CRC
Data Data Data Data
Data Data
Data Data CRC EOP
Last byte transmitted
Bits in Instruction field
MSb LSb
verify data =1 reply = 1 increment = 1
reserved =0 | command=1 | write=1 reply addr len
don’t verify =0 | noreply=0 | noinc=0

packet type

command

reply addr len

Command Field

Read

e The Packet Type field is set to value O1b, that is:

e The Reply Address length field is set to 00b, because there is no support for this feature.

— The Reserved bit is cleared (0) as defined by the standard [27, "Packet type field"];

— The Command bit is set (1) to indicate a command.

The Command field is set to value 0010b, that is:

this case;

48

The Write/Read bit is cleared (0) to indicate a read;

The Verify-Data-Before-Write bit is cleared (0), because this bit is not relevant in

The Reply bit is set (1), because the read data is sent back to the initiator as a reply;

The Increment/No Increment bit is cleared (0), because this feature is not supported.

7.3.1.2 Write

When the RMAP initiator, i.e. OBC, issues a write command to the target the Instruction field
of the corresponding RMAP packet header must be set to value 0x60. This value is decoded as
follows (refer to Table 7.2):

e The Packet Type field is set to value O1b, that is:

— The Reserved bit is cleared (0) as defined by the standard [27, "Packet type field"];

— The Command bit is set (1) to indicate a command.

e The Command field is set to value 1000b, that is:

The Write/Read bit is set (1) to indicate a write;

The Verify-Data-Before-Write bit is cleared (0) due to the non-acknowledged, non-
verified mode used by this design;

The Reply bit is cleared (0) again due to the non-acknowledged, non-verified mode
used by this design;

The Increment/No Increment bit is cleared (0), because this feature is not supported.

e The Reply Address length field is set to 00b, because there is no support for this feature.

7.3.2 Address Fields

Both the Extended Address and Address fields of the RMAP packet header are used to address
the memory structure of the SpW2SPI bridge as specified in Section 4.2. The addressing scheme
based on the RMAP address fields is defined as follows:

e The Extended Address field is used to differentiate between addressing the mailboxes and
the registers in the SpW2SPI bridge. Setting this byte to value 0x01 allows addressing
the mailbox memory region in the SpW2SPI bridge. Alternatively, by setting this byte to
0x00 allows addressing the registers in the SpW2SPI bridge.

e The Address field represents a four-byte address which is used to address all the required
memory data structures as specified in Sections 4.2.1 and 4.2.2.

7.3.3 Redundant Fields

Due to the specific nature of the current application some fields of the RMAP packet header do
not matter, i.e. they can be any value. The following list enumerates these redundant fields:

e Target Logical Address;

o Key.

49

7.3.4 Examples of Command Interface Usage

Table 7.3 demonstrates how the RMAP initiator, i.e. OBC, writes a telecommand to the RMAP
target using the defined command interface. The notable key-points of this example are as
follows:

e The Instruction field is set to 0x60 to indicate a write command (see Section 7.3.1.2);

e The Extended Address field is set to 0x01 to select the mailbox memory region (see
Section 7.3.2);

e The Address field is set to 0x00000000 to select the telecommand mailbox (see Table 4.5).

Table 7.3: Write telecommand mailbox using RMAP command interface

’ Field ‘ No. bytes | Value ‘

Target SpW Address 0 -
Target Logical Address 1 0x54
Protocol Identifier 1 0x01

Packet Type 01b
Instruction Command 1 1000b

Reply Address Length 00b
Key 1 0x88
Reply Address 0 -
Initiator Logical Address 1 0x76
Transaction Identifier 2 0x00 0x00
Extended Address 1 0x01
Address 4 0x00 0x00 0x00 0x00
Data Length 3 0x00 0x00 0x09
Header CRC 1 0xE7
Data 9 0x80 0x01 ... 0x04
Data CRC 1 0xC5

TOTAL 26

Table 7.4 demonstrates how the RMAP initiator, i.e. OBC, reads the OBC status register from
the RMAP target using the defined command interface. The essential key-points of this example
are as follows:

e The Instruction field is set to 0x48 to indicate a read command (see Section 7.3.1.1);

e The Extended Address field is set to 0x00 to select the register memory region (see Sec-
tion 7.3.2);

e The Address field is set to 0x00000000 to select the OBC status register (see Table 4.4).

50

Table 7.4: Read OBC status register using RMAP command interface

’ Field No. bytes | Value

Target SpW Address 0 -
Target Logical Address 1 0x54
Protocol Identifier 1 0x01

Packet Type 01b
Instruction Command 1 0010b

Reply Address Length 00b
Key 1 0x88
Reply Address 0 -
Initiator Logical Address 1 0x76
Transaction Identifier 2 0x00 0x07
Extended Address 1 0x00
Address 4 0x00 0x00 0x00 0x00
Data Length 3 0x00 0x00 0x01
Header CRC 1 0xF4

TOTAL 16

7.4 Controller Block Diagram

7.4.1 Overview

Figure 7.1 presents the block diagram of the SpaceWire RMAP controller.

TXFIFO

data byte
l———————————
reply n-char «+=—— RMAPTRGT REPLY ENCODER «—data byte— : : :
—————»
T | rdy/vaid hdshk
ctrl stat
RMAPTRGT CONTROLLER |« auth >
ctrl stat
‘ | RXFIFO (gy/vaid hdshk
[
cmd n-char —» RMAPTRGT CMD DECODER ——data byte— : : :
—

data byte

Figure 7.1: SpaceWire RMAP target controller block diagram

51

7.4.2 Command Decoder

The target command decoder is responsible for decoding RMAP command packets.The head-
ers of these RMAP packets are first checked for validity using the header CRC and then the
authorization parameters are passed to the target controller to be authorized by the host.

7.4.3 Reply Encoder

The responsibility of the target reply encoder is to send RMAP reply packets with the data from
a read command.

7.4.4 Target Controller

The target controller controls the reception, authorization and reply of an RMAP target transac-
tion.

7.4.5 Global Timing Diagrams for RMAP Write and Read Commands

As it was specified in Section 7.1 there are two RMAP commands that are required for the
current work, i.e. the write and the read commands. As such, Figures 7.2 and 7.3 demonstrate
the global timing diagrams of the designed RMAP target controller for the write and the read
commands, respectively. These diagrams reveal the operation steps made inside the designed
controller when processing the supported RMAP commands.

O S S I A S I I I I A O O O

rmap_trgt_cmd_dec.ctrl.req_hdr F\ // > //
rmap_trgt_cmd_dec.ctrl.req_dta // /*\ \ >//\ // 7\—
rmap_trgt_cmd_dec.ctrl.req_dta_size /////////,:,/////////////////W/////%%W/////jg dta_size // / m
rmap_trgt_cmd_dec.spw_rxo.nchar_rdy ﬂ \’/ﬁ
rmap_trgt_cmd_dec.spw_rxi.nchar_valid // \\ 'I l‘ i //
rmap_trgt_cmd_dec.spw_rxi.nchar_data DO X D // X \ [l Dn [X D //
rmap_trgt_cmd_dec.rmap_rxo.byte_valid // \1 ! l ! /ﬁ(
rmap_trgt_cmd_dec.rmap_rxi.byte_rdy Ji Ji

rmap_trgt_cmd_dec.stat.ack_hdr

rmap_trgt_cmd_dec.stat.ack_hdr_data m

rmap_trgt_cmd_dec.stat.ack_dta // // et
rmap_trgt_controller.autho.req // ‘r //
rmap_trgt_controller.autho.req_data /////////////////////E‘ﬂg,ﬂﬂ’///////////////////////////////
rmap_trgt_controller.authi.ack // v //
rmap_trgt_controller.authi.grant // /_\ //

Figure 7.2: SpaceWire RMAP target global timing diagram for RMAP write command

52

ejp yoeeysous Aldes 161 dew

Ipy yoejeysous Ajdas 361y deuu

ejep 9JAq'ixy dewlsoua A|dai)61 dewu

plieA 8)Aq'1xy dewl-ous” Ajdei)61 dewu

Api~91Aq ox) dewusous A|dai 161 dewu

ejep Jeyou'oxy mds-ous Ajdai 161y dewu

plieA Jeyouroxy mds-oua Ajdas 361y dew

Apa—aeyourixy” mds-ous™ Ajdas 165 dew

2zIs” e)p bal|yo-ous Ajdes 161 dewu

e)p baurorous Aldes)61 dewu

ejep Jpy barporous Aldes 161 dewd

] v I

\\ 1py~bauyorous” Aldel)61 dewd

juesbiyyne-is|jonuod 361y dewu

04)u00 161 dew

g\ J
A= e X 777777, == e ot saionuco bl deus

-A

Ipy yoejelsosp pwo 161 dewl

x oa ejep Jeyou'ixa- mds-osp pwo 161 dew

pleA Jeyou'ixs- mdsosp pwo 361 dewd

\\ \\ / /K //|\ ApJJeyouroxs~mdsoep pwo 614 dewl

\\ Ipy~bauyorosp pwo 161y dewu

Figure 7.3: SpaceWire RMAP target global timing diagram for RMAP read command

53

Chapter 8

Prototyping the Design on Microsemi
ProASIC3E Starter Kit FPGA

8.1 Overview

When prototyping the designed system on Microsemi ProASIC3E Starter Kit FPGA board
(demonstrated in Figure 8.1) there are two main sources of information regarding the hardware:

1. ProASIC3E Flash Family FPGAs with Optional Soft ARM Support [28];

2. ProASIC3E Starter Kit User Guide [29].

Here it is very important to understand that the first document describes the general features
of ProASIC3E FPGA device, while the second document defines a concrete application of the
described device in terms of the Starter Kit FPGA board. The configuration of the FPGA 1/0
banks can be taken as an example of why this difference is so important (see Section 8.2).

Additionally, some clarification should be given regarding the optional ARM support mentioned
in the name of the first document (see Section 8.3).

There were also certain challenges during the prototyping process. Even though one of them—
the inference of RAM—is more related to Synopsys synthesis tools which are part of Libero
SoC software, it is still worth describing this issue in the current prototyping context (see Sec-
tion 8.4).

Since the current work closely deals with SpaceWire, the details of constraining the SpaceWire
Rx clock recovery must be specified (see Section 8.5).

8.2 1/0 Banks Configuration

The documentation of Microsemi ProASIC3E FPGA family A3PE1500 device states [28, "Ta-
ble 1-1 : ProASIC3E Product Family"] that there are 8 I/O banks available on the FPGA board.
These banks can be seen in Figure 8.1 as four pin headers around the FPGA chip. Each I/O bank
can be configured to use the I/O standards supported by the FPGA device, including LVTTL and
LVDS. During the selection of the required I/O standards in the MultiView Navigator (MVN)

54

Wall Mount
Power

Interboard ISP
Connector

CAT5E RJ45 Removable
Connectors | Shunts to
for LVDS - Isolate All I/0Os
Communication | for Prototyping
R bl - FlashPro4
%?3:?5 tS . ISP Connector
Isolate All I/Os
for Prototyping
ProASIC3/E in
Oscillator for PQ208 Package
System Clock
SMA for Every PQ208
Optional Pin Accessible
External for Prototyping
Oscillator
Manual
Clock
Option

8 LEDs 4 Switches Removable Shunts to Isolate
All I/Os for Prototyping

Figure 8.1: Microsemi ProASIC3E Starter Kit [1]

tool [30] in Libero SoC the proper voltage levels are automatically applied to the corresponding
I/0 banks (see Figure 8.2).

Even though the MVN tool allows applying various voltages to the I/O bank, the actual hard-
ware, i.e. the starter kit FPGA board, may not support certain voltages on certain I/O banks.
This is where the difference between the general specification and the actual implementa-
tion comes into play. As depicted in one of the board schematics for ProASIC3E Starter Kit
FPGA [29, "Figure 13, FPGA Headers and Expansion Bus"] only two I/O banks—banks 4 and
S5—can be configured to provide various voltage levels, all the other banks have their certain
voltage levels fixed. As an additional note Figure 8.3 shows how switches SW9 and SW8 can
be used to configure the voltage levels of banks 4 and 5, respectively. The necessity to pro-
vide such detail here is that the schematics provided by Microsemi are rather ambiguous in this
regard.

The final important note here is that the voltage level for LVDS I/O standard supported by
ProASIC3E FPGA family is exactly 2.5 volts, not 3.3 volts [28, "Table 2-78, LVDS Minimum
and Maximum DC Input and Output Levels"]. Failure to know this detail in advance may
seriously impact the prototyping process and thus the overall design time schedule.

8.3 Soft ARM Support

Even though mentioned in the first document presented in Section 8.1, the given Starter Kit does
not have the soft ARM support. To use this feature one has to acquire another development kit
from Microsemi which is Cortex-M1 enabled [31].

55

(a)

1/O Bank Settings &J /O Bank Settings |_
Choose Bank: Bank1 - Locked Choose Bank: Bank? - Locked
Select all technologies that the bank should support Select all technologies that the bank should support
JILYTTL V| PCI V| PCIX LWTTL PCI PCIX
LWCMOS 1.2 LWCMOS 1.5¢ LWCMOS 1.8y LWCMOS 1,24 LYCMOS 1.5 LYCMOS 1.8
LWCMOS 254 LVEMOS 25/50 g Lvemos 2.3v J|LVCMOS 2.5 V| LVCHMOS 2.5/5.0v LWEMOS 33
GTL 25 GTL 3.3% GTL 2.8 GTL 3.3%
GTL+ 25 GTL+ 3.3 GTL+ 25 GTL+ 3.3
35TL2 SETL 20 SSTL2I SSTL 20
SSTLA SETL AN SETLA SSTL AN
HSTLI HSTLII HSTLI HSTLII
V| LYPECL LvDS LWPECL J|LvDS
WL : 330V WL : 2.50
Usze default pins for WREFs Uze default pins for WREFs
Iore Attributes Iore Attributes
k.] | Cancal | Apply Help k. | | Caneel | Apply Help

(b)

Figure 8.2: Microsemi ProASIC3E I/0 banks configuration

8.4 RAM Inference

According to documentation [28, "Table 1-1 : ProASIC3E Product Family"] Microsemi ProA-
SIC3E FPGA family A3PE1500 device has 270 Kbits (1024 bit) of RAM. This was more than
enough for the needs of the current work. However, the inference of this RAM proved to be
rather challenging.

Although there were VHDL coding guidelines provided by Synopsys FPGA Synthesis manuals
for RAM inference specifically for Microsemi ProASIC3E devices [32, "VHDL Guidelines for
RAM Inference"], the given VHDL code (see Listing 8.1) nevertheless failed to infer RAM
during the synthesis process. The requested RAM was implemented using flip-flops instead of
the available RAM blocks. This was very undesirable since the design used a decent amount of
RAM, and by implementing this RAM using flip-flops the synthesis process quickly ran out of
FPGA resources.

The RAM inference failure could be related to the fact that the given reference code did not
register the read output. Indeed, the read path involved a large multiplexer that induced a non-
negligible delay overhead. Instead, by registering the output the read path could be completely
isolated within the RAM entity thus simplifying the synthesis process [19, "Register All Out-
puts"].

Listing 8.2 presents the VHDL code for RAM inference that successfully inferred all the re-
quired RAM blocks in Microsemi ProASIC3E FPGA device. However, when using this code
one must pay attention to the one clock cycle delay during the read operation caused by the
additional register on the read path.

56

4
. 15V & ;‘

.

Figure 8.3: Microsemi ProASIC3E Starter Kit voltage level settings for I/O banks 4 and 5

8.5 SpaceWire Rx Clock Recovery Constraints

First of all it should be mentioned that the input and output LVDS buffers were embedded into
the top level schematic of the design using the macro blocks INBUF__LVDS and OUTBUF_LVDS
provided in the Libero SoC catalog. Figure 8.4 demonstrates the top level schematic of the de-
sign made in Libero SoC Smart Design tool.

Having the LVDS I/O buffers in place the SpaceWire Rx clock recovery was constrained based
on the recommendations provided in Microsemi documents [21, "Timing Analysis of RTG4
Data Recovery Block"]. This resulted in the placement of important components, such as the
first pair of capturing D flip-flops and the XOR gate, as presented in Figure 8.5.

8.6 Verification and Results

8.6.1 Simulation

The prototype was simulated both partially and completely to check that the overall function-
ality was correct. Figure 8.6 demonstrates the block diagram of the simulation testbench used
in this work. The presented block diagram omits some secondary details, such as the DDR
registers and the Tx clock generator of the intermediate SpaceWire codec module. This is done
intentionally in order to focus on the important bits. Namely, it can be seen that the testbench is
driven by two top-level types of stimuli: 1) transfer RMAP data and 2) transfer SPI data. These

57

lvds_dout

SpW2SPI_bridge_wrap
[clk ck miso miso
rsta 4 rsta dout
sclk schk sout
[chipseln chipseln tc_valid
mosi 8] mosi tm_rdy
b din tm_valid
. i sin tc_rdy
Ivds_din link_on
RFADP =
] g
Y
PO
Ivds_sin Ivds_sout
2P I
A —
2%

Figure 8.4: Microsemi ProASIC3E Starter Kit prototype top level schematic

51 Logeal
w1 &1k chipsein_pad
v ok ck_pad
T lewissarver_wrap_inst
- &TF link_on_pad
o ol [f
= ol

b

First pair of D flip-flops

Figure 8.5: Microsemi ProASIC3E Starter Kit prototype SpW Rx clock recovery placement

58

Listing 8.1 Microsemi ProASIC3E RAM inference VHDL coding guideline by Synopsys

—— Synopsys VHDL guideline
—-- for RAM inference on Microsemi ProASIC3E FPGA devices

-- NOTE : The code is provided AS IS with no modifications.

—— IMPORTANT : std_logic_unsigned is NOT a standard package,
- thus its use is HIGHLY DISCOURAGED!!

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity ram_test is

port (d : in std_logic_vector (7 downto 0);
a : in std_logic_vector (6 downto 0);
we : in std_logic;
clk : in std_logic;
q : out std_logic_vector (7 downto 0));

end ram_test;

architecture rtl of ram_test is

type mem_type is array (127 downto 0) of std_logic_vector (7 downto 0);
signal mem : mem_type;
begin
process (clk)
begin
if rising_edge (clk) then
if we = '1’ then
mem (conv_integer (a)) <= d;
end if;
end if;

end process;
q <= mem(conv_integer (a));
end rtl;

Table 8.1: Microsemi ProASIC3E Starter Kit prototype area summary

’ Resource \ Used \ Total \ % ‘

Core cells 6265 | 38400 | 16
Block RAMs | 12 60 20

stimuli are wrapped into their corresponding procedures (the emulators) to ease the configu-
ration of the test cases. Therefore, by using this testbench it is possible to simulate complete
end-to-end communication use cases.

8.6.2 Area Summary

The synthesis of the whole system gave the results presented in Table 8.1. In fact, the usage
of the core cells could be even lower provided that more RAM blocks were used for various
FIFO’s in the design.

8.6.3 Prototype Assembly and Testing

Later, when the prototype was assembled (see Figure 8.7), an end-to-end hardware verification
was performed at the Space Exploration Institute (Space-X). The sequence of actions presented
in Figure 8.8 was successfully executed on the prototype which showed that the communication
through SPI and, most importantly, SpaceWire was working correctly.

Finally, Figures 8.9 and 8.10 demonstrate the operation of the links during run-time captured
with logic analyzers.

59

Listing 8.2 Microsemi ProASIC3E RAM inference VHDL code

-— VHDL guideline
-- for RAM inference with registered output.

-— NOTE : The rd _data output is assigned inside a synchronous
- process, thus inferring a register at the output.

library ieee;
use ieee.std_logic_1164.all;

entity dev_utils_byteram is
generic (ramsize : positive)

port (clk : in std_logic;
addr : in natural range ramsize - 1 downto 0;
rd_data : out std_logic_vector (7 downto 0);
wr_data : in std_logic_vector (7 downto 0);
wr_en : in std_logic)

end entity dev_utils_byteram;

architecture fpga_proasic3e of dev_utils_byteram is

type mem_type is array (ramsize - 1 downto 0) of std_logic_vector (7 downto 0);
signal mem : mem_type;
begin
ram_proc : process(clk) is
begin
if rising_edge (clk) then
rd_data <= mem(addr); -- the read data is registered here
if wr_en = "1’ then
mem (addr) <= wr_data;
end if;
end if;

end process ram_proc;
end architecture fpga_proasic3e;

8.7 Areas for Improvement

As shown in Section 8.6.3 the prototype successfully executed an end-to-end communication
test sequence. However, it was nevertheless noted that by changing environmental conditions,
e.g. by cooling the prototype FPGA board, certain transmitted bits got flipped thus corrupting
the transmitted data. Interestingly, it was discovered that this problem occurred on the SPI
communication side, and since the current SPI implementation does not use any data integrity
checks on the signal level this data was successfully transmitted further through SpaceWire. The
solution to this problem could be to apply very precise FPGA pin constraints. These constraints
would define the setup and hold times required for a stable communication between the MCU
of the wireless access point and the FPGA.

60

: FPW2SPI Bridge Testbench :

: n-char data :

: rdy/valid strobe :

transfer | R_IV_I AP Spw :
rmap <——= | nitiator '
data i | Emulator n-char Codec data |
rdy/valid | strobe |
Spw2sPl | !

Bridge !

sclk A |

transfer : SPI nes > |
dSPi ~—— Master mosi i
ata | - i

.| Emulator miso !

SpaceWire L VDS
_.++7connection

'-1‘.‘!?[1: i. O

CEEEECEASREEFEERREEEERERER

ol
connection

Figure 8.7: Microsemi ProASIC3E Starter Kit prototype in action

61

sd SpW2SPI Bridge prototype test sequence)

SPI | SpW2SPI Bridge | OBC

1: read spi_comstat register to check bittc_valid

2:read spw_comstat register to check bit tc_rdy

3: write 9 bytes to tc_data mailbox

4: read spi_comstat register to check bit tc_valid

U
"
L

ll

< 5:read spw_comstat register to check bittm_valid

7]

6: read 9 bytes from tc_data mailbox

loop : [transfer 1000 telemetries])

7:read spi_comstat register to check bit tm_rdy

J

8: write 1512 bytes to tm_data mailbox

9: read spw_comstat register to check bit tm_valid

10: read 1512 bytes from tm_data mailbox

g

Figure 8.8: Microsemi ProASIC3E Starter Kit prototype test sequence

Channel_0 n_cs, or an active low chip select signal;
Channel_1 sclk, or a serial clock signal;
Channel_2 mosi, or a master-out slave-in signal;

Channel_3 miso, or a master-in slave-out signal.

Figure 8.9: Microsemi ProASIC3E Starter Kit prototype SPI status register reading

62

PC FPGA
v v

End A Event End AError EndADelta EndBEvent EndBError End B Delta
NULL 100 ns
NULL 80 ns
NULL 80 ns e .
NULL 80 ns NCHAR [FE] 100ns <— initiator logical address
NULL 60 ns
R 80ns <—— rmap protocol identifier
NULL 80ns . .
R 120ns -—— read reply instruction
NULL 100 ns
R [00 100ns <—— read reply status
NULL 80ns [\ .
NULL 80ns m@! 100ns <«— target logical address
NULL 60 ns NULL 60 ns
NULL 80 ns | [
120 ns .. .
NULL 100ns transaction identifier
NCHAR [05] 100 ns
NULL gons | |
NCHAR [00] 100 ns <+—— reserved
NULL 80 ns
NULL 60 ns
NCHAR [00] 100 ns
NULL gons | |
NCHAR [00] 100ns read data length
NULL wo0ns [|
NCHAR [01] 100 ns
NULL 80ns
100ns <—— header crc
NULL 80 ns
NULL 60 ns
NULL 60 ns
FCT 40ns .
R 120ns <—— spw_comstat register value
NULL 100 ns -
R 100 ns <—— data crc
NULL 80 ns
EOP 40 ns
NULL 80 ns
NULL 80 ns

Figure 8.10: Microsemi ProASIC3E Starter Kit prototype SpW RMAP status register reading

63

Conclusions

The SpaceWire to SPI bridge developed during this thesis involves a number of important con-
tributions specifically designed and implemented for this work, including:

e SPI slave IP core;
e SpaceWire codec IP core;
e SpaceWire RMAP target IP core;

e SpaceWire to SPI bridge IP core;

Despite having multiple contributions, this work as a whole offers a lean design solution that
includes only the necessary hardware components to provide the required functionality. As
such, no processor involving architecture was used during this work, and thus the delivered
solution does not contain any software parts. Even though the usage of software could facilitate
rapid prototyping of the requested functionality, it would also increase the complexity of the
overall design, hence negatively impacting its reliability. Additionally, the increased complexity
would require more documentation, more analysis and more testing and verification. These
listed activities are especially critical in terms of a space project. Therefore, the benefits of
having software in this kind of project would not have outweighed the complexity it would
have brought about.

Based on the discussion regarding the software worthlessness in the scope of this work, it was
an interesting finding to realize that a fast solution, even if it is robust and easily scalable, may
not be the best solution for the problem at hand. Compared to a university with its academical
interests an industry dictates its own rules, and the latter holds especially in case of space in-
dustry. Therefore, a solution that seems sub-optimal from one point of view, may actually be
absolutely justified from another point of view.

In spite of being quite a challenge, the implementation of a SpaceWire codec from scratch
proved to be very rewarding in terms of digital design knowledge and experience. Moreover,
there is no better way to learn a communication protocol, such as SpaceWire, than to implement
it yourself in hardware. Needless to say that back then, in the beginning of the project, it was a
fair risk to take up such a demanding task, but the mentioned positive aspects took priority over
the risks.

Due to the thorough documentation of the SpaceWire to SPI bridge interfaces presented in Sec-
tions 4.2, 5.3 and 7.3 the outcome of this work can be applied to other projects as well, provided
they require this type of communication bridge functionality. Moreover, the fact that there is no
such off-the-shelf product on the market makes this work unique for potential applications.

64

Future perspectives of this thesis could include design options where multiple SpaceWire nodes
wish to communicate with multiple microcontrollers, or one microcontroller using multiple SPI
links to improve the data throughput. Such options could offer quite an interesting challenge to
be implemented again without any software support. One possible way to tackle this problem
could be the application of the network-on-chip (NoC) architecture [33].

65

Appendix A

Essential RTL Design Practices Used

A.1 Reset Synchronizer

Guided by SNUG Boston 2003 paper [34] the current design uses a reset synchronizer circuit.
Figure A.1 presents a block diagram to illustrate the concept behind this design practice.

. —
L —>—»
D Q »D QF—msst_n—¢
—>—»
> >
P
clk * T
rs_n

Figure A.1: Reset synchronizer block diagram

This practice instructs the system reset to be asserted asynchronously, but deasserted syn-
chronously. The above-mentioned paper explains the importance of adhering to this reset ma-
nipulation sequence. However, from the perspective of the current work it is very important
to note that the system reset will be deasserted with a delay of two clock cycles. This feature
imposes certain constraints to some parts of the design process, e.g. the definition of the SPI
command interface as presented in Section 5.3.

A.2 Two-Process Design Method

In order to improve code readability the two-process method proposed by Jiri Gaisler [35] was
first studied and then successfully applied during this work. Indeed, by increasing the abstrac-
tion level of the VHDL code it was possible to improve not only the readability of the code,
but also its maintainability which in its turn facilitated the overall development process. List-
ing A.1 demonstrates the application of this method on a simple 8-bit counter. Even though this
example is very primitive, the fact that the whole GRLIB, including the space-certified LEON3

66

soft-core processor, is written using this VHDL coding style shows that the proposed method is
indeed very beneficial and viable.

It should be mentioned though that the proposed method may not be quite beginner-friendly as
it requires the designer to have a decent experience in digital logic development using VHDL.
Even though the resulting code feels much like software, it is still hardware description, and the
failure to understand that will eventually lead to bad synthesis results.

67

Listing A.1 Two-process VHDL design method applied to simple 8-bit counter

—— Package for 8-bit counter component

library ieee; use ieee.std_logic_l164.all;

package counter_pkg is
type counter_in_type is record

1d_en : std_logic;
cnt_en : std_logic;
ld_data : natural range 0 to 255;

end record counter_in_type;

type counter_out_type is record
cnt_data : natural range 0 to 255;
zero : std_logic;

end record out;

component counter is port (clk : in std_logic;
rstna : in std_logic; -- active low asynchronous reset
inp : in counter_in_type;
outp : out counter_out_type);

end component counter;
end package counter_pkg;

-- 8-bit counter entity

library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all;
use work.counter_pkg.all;

entity counter is port (clk : in std_logic;
rstna : in std_logic; -- active low asynchronous reset
inp : in counter_in_type;
outp : out counter_out_type);

end entity counter;

architecture two_proc of counter is
type reg_type is record

1d_en : std_logic;
cnt_en : std_logic;
zero : std_logic;
cnt_data : natural range 0 to 255;

end record reg_type;

constant REG_RST : reg_type := (ld_en => ’0’, cnt_en => ’0’, zero => ’'0’, cnt_data => 0);
signal r : reg_type := REG_RST;
signal r_nxt : reg_type;

begin

—— Combinational process for counter logic

logic_proc : process(r, inp) is
variable v : reg_type;
begin

-— Default assignment

-— Overriding assignment

v.ld_en := inp.ld_en; v.cnt_en := inp.cnt_en; v.zero := ’'0’;

—— Main algorithm

if r.cnt_en = ’'1’ then v.cnt_data r.cnt_data + 1; end if;
if r.ld_en = ’1’ then v.cnt_data inp.ld_data; end if;
if v.cnt_data = 0 then v.zero 1, end if;

-- Drive output

outp.cnt_data <= r.cnt_data; outp.zero <= r.zero;

-- Update state register inputs

r_nxt <= v;
end process logic_proc;

-- Sequential process for counter state

state_proc : process(clk, rstna) is
begin
if rstna = '0’ then
r <= REG_RST;
elsif rising_edge (clk) then
r <= r_nxt;
end if;
end process state_proc;
end architecture two_proc;

68

Bibliography

[1] ProASIC3 Starter Kit. Microsemi. Retrieved 06.05.2018. [Online]. Available: https:
/lwww.microsemi.com/images/soc/products/hardware/ProASIC3_board_2015_3.png

[2] About the Technology Research Programme. European Space Agency. Retrieved
07.05.2018. [Online]. Available: https://www.esa.int/Our_Activities/Space_Engineering_
Technology/Shaping_the_Future/About_the_Technology_Research_Programme_TRP

[3] Space Exploration Institute. Space-X. Retrieved 07.05.2018. [Online]. Available:
http://www.space-x.ch/

[4] SpaceWire — Links, nodes, routers and networks, European Cooperation for Space Stan-
dardization Std. ECSS-E-ST-50-12C, jul 2008.

[S5] System engineering general requirements, European Cooperation for Space Standardiza-
tion Std. ECSS-E-ST-10C, mar 2009.

[6] Software, European Cooperation for Space Standardization Std. ECSS-E-ST-40C, mar
2009.

[7] About ESA IP Cores. European Space Agency. Retrieved 04.05.2018. [On-
line]. Available: http://www.esa.int/Our_Activities/Space_Engineering_Technology/
Microelectronics/About_ESA_IP_Cores

[8] SpW-RMAP-Astrium. European Space Agency. Retrieved 04.05.2018. [On-
line]. Available: https://www.esa.int/Our_Activities/Space_Engineering_Technology/
Microelectronics/SpW-RMAP- Astrium

[9] SpW-RMAP-Dundee. European Space Agency. Retrieved 04.05.2018. [On-
line]. Available: https://www.esa.int/Our_Activities/Space_Engineering_Technology/
Microelectronics/SpW-RMAP-Dundee

[10] D. Juliusson, “Development of a SpaceWire interface in VHDL,” Master’s thesis,
Chalmers University of Technology, 2012.

[11] P. Dillien. And the Winner of Best FPGA of 2016 is... EETimes. Retrieved
04.05.2018. [Online]. Available: https://www.eetimes.com/author.asp?section_id=36&
doc_1d=1331443

[12] RT ProASIC3. Microsemi. Retrieved 06.05.2018. [Online]. Available: https://www.
microsemi.com/product-directory/rad-tolerant-fpgas/1696-rt-proasic3

[13] VAI0820 ARM Cortex-M0O MCU Datasheet, Vorago Datasheet VA10820, Rev. 1.2.

69

https://www.microsemi.com/images/soc/products/hardware/ProASIC3_board_2015_3.png
https://www.microsemi.com/images/soc/products/hardware/ProASIC3_board_2015_3.png
https://www.esa.int/Our_Activities/Space_Engineering_Technology/Shaping_the_Future/About_the_Technology_Research_Programme_TRP
https://www.esa.int/Our_Activities/Space_Engineering_Technology/Shaping_the_Future/About_the_Technology_Research_Programme_TRP
http://www.space-x.ch/
http://www.esa.int/Our_Activities/Space_Engineering_Technology/Microelectronics/About_ESA_IP_Cores
http://www.esa.int/Our_Activities/Space_Engineering_Technology/Microelectronics/About_ESA_IP_Cores
https://www.esa.int/Our_Activities/Space_Engineering_Technology/Microelectronics/SpW-RMAP-Astrium
https://www.esa.int/Our_Activities/Space_Engineering_Technology/Microelectronics/SpW-RMAP-Astrium
https://www.esa.int/Our_Activities/Space_Engineering_Technology/Microelectronics/SpW-RMAP-Dundee
https://www.esa.int/Our_Activities/Space_Engineering_Technology/Microelectronics/SpW-RMAP-Dundee
https://www.eetimes.com/author.asp?section_id=36&doc_id=1331443
https://www.eetimes.com/author.asp?section_id=36&doc_id=1331443
https://www.microsemi.com/product-directory/rad-tolerant-fpgas/1696-rt-proasic3
https://www.microsemi.com/product-directory/rad-tolerant-fpgas/1696-rt-proasic3

[14] LEON3 Processor. Cobham Gaisler AB. Retrieved 04.05.2018. [Online]. Available:
https://www.gaisler.com/index.php/products/processors/leon3

[15] AMBA Specifications. ARM. Retrieved 04.05.2018. [Online]. Available: https:
/lwww.arm.com/products/system-ip/amba-specifications

[16] Libero SoC Design Software. Microsemi. Retrieved 04.05.2018. [Online]. Available:
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc

[17] G. Dimitrakopoulos, A. Psarras, and I. Seitanidis, Microarchitecture of Network-on-Chip
Routers: A Designer’s Perspective. Springer Science+Business Media, 2015.

[18] SPI Block Guide, Motorola, Inc. Document Number S12SPIV3/D, Rev. 03.06, feb 2003.

[19] M. Keating and P. Bricaud, Reuse Methodology Manual for System-on-a-Chip Designs,
3rd ed. Kluwer Academic Publishers, 2002.

[20] C. Cummings, “Simulation and Synthesis Techniques for Asynchronous FIFO Design,”
in Synopsys Users Group Conference, San Jose, USA, 2002.

[21] Implementing SpaceWire Clock and Data Recovery in RTG4 FPGAs, Microsemi Applica-
tion Note AC444, Rev. 3.0.

[22] P. Walker and B. Cook, “Spacewire: Key principles brought out from 40 year history,” in
AIAA/USU Conference on Small Satellites, North Logan, USA, aug 2006.

[23] S. Huq and J. Goldie, An Overview of LVDS Technology, National Semiconductor Appli-
cation Note 971, jul 1998.

[24] A. Baklezos, C. Nikolopoulos, C. Capsalis, and S. Tsatalas, “Effect of LVDS link speed
and pattern length on spectrum measurements of a Spacewire harness,” in 2017 Inter-
national Workshop on Antenna Technology: Small Antennas, Innovative Structures, and
Applications (iWAT), Athens, Greece, mar 2017.

[25] C. McClements, S. Parkes, and A. Leon, “The Spacewire CODEC,” in International
SpaceWire Seminar (ISWS 2003), Noordwijk, Netherlands, nov 2003.

[26] B. Cook and P. Walker, “SpaceWire on FPGA - Challenges and Solutions,” in DASIA
Conference, Majorca, Spain, may 2008.

[27] SpaceWire - Remote memory access protocol, European Cooperation for Space Standard-
ization Std. ECSS-E-ST-50-52C, feb 2010.

[28] ProASIC3E Flash Family FPGAs with Optional Soft ARM Support, Microsemi Datasheet
DS0098, Rev. 15.

[29] ProASIC3/E Starter Kit, Microsemi User Guide UG0048, Rev. 5.1.
[30] MultiView Navigator for Libero SoC v11.8, Microsemi User Guide.

[31] Cortex-M1-enabled ProASIC3L Development Kit. Microsemi. Retrieved 06.05.2018.
[Online]. Available: https://www.microsemi.com/existing-parts/parts/143979

[32] Synplify Pro for Microsemi Edition, Synopsys FPGA Synthesis, feb 2013.

70

https://www.gaisler.com/index.php/products/processors/leon3
https://www.arm.com/products/system-ip/amba-specifications
https://www.arm.com/products/system-ip/amba-specifications
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc
https://www.microsemi.com/existing-parts/parts/143979

[33] “A comparison of Network-on-Chip and Busses,” white paper, Arteris, 2005.

[34] C. Cummings, D. Mills, and S. Golson, “Asynchronous & Synchronous Reset Design
Techniques - Part Deux,” in Synopsys Users Group Conference, Boston, USA, 2003.

[35] J. Gaisler. A structured VHDL design method. Gaisler Research. Retrieved 28.04.2018.
[Online]. Available: https://www.gaisler.com/doc/vhdl2proc.pdf

71

https://www.gaisler.com/doc/vhdl2proc.pdf

	Abstract
	Introduction
	Context
	Scope
	State of the Art
	Space Project Regulations
	SpaceWire RMAP IP Core Availability
	Microsemi Community

	Thesis Outline

	Requirements
	SPI Slave Connectivity
	SpaceWire RMAP Target Connectivity
	Microsemi ProASIC3E Starter Kit FPGA

	Design Under Analysis
	Double Slave Feature
	System-on-a-Chip Architecture
	Overview
	Applicability
	Design Redundancy
	Support by FPGA Tools

	Resolution

	Non System-on-a-Chip Architecture
	Overview
	Applicability
	SpaceWire RMAP IP Core

	Resolution

	SpaceWire to SPI Bridge Design
	Overview
	Memory Mapping
	Registers
	Mailboxes

	Bridge Controller
	RAM Controller
	Mailbox RAM Controller
	Register RAM Controller

	SPI Slave Controller Design
	Protocol Description
	Protocol Usage Considerations
	Clock Polarity and Phase
	Serial Clock Frequency
	MSb first vs. LSb first

	Command Interface
	Read Command Interface
	Write Command Interface
	Examples of Command Interface Usage
	Take-Away Points

	Controller Block Diagram
	Capture and Propagation of SPI Signals
	Clock Domain Crossing
	Command Interface Codec

	SpaceWire Codec Design
	Protocol Description
	Protocol Usage Considerations
	SDR vs. DDR
	Data Signaling Rate
	Transmitter Clock Generation
	Receiver Clock Recovery
	Time-Code Support

	Global Block Diagram
	Core Block Diagram
	Rx Pipeline
	Deserializer
	Clock Domain Crossing
	Decoder
	Host FIFO

	Tx Pipeline
	Host FIFO
	Encoder
	Clock Domain Crossing
	Serializer
	Strobe Generator

	SpaceWire RMAP Target Controller Design
	Protocol Description
	Read Command
	Write Command

	Protocol Usage Considerations
	Command Interface
	Command Field
	Read
	Write

	Address Fields
	Redundant Fields
	Examples of Command Interface Usage

	Controller Block Diagram
	Overview
	Command Decoder
	Reply Encoder
	Target Controller
	Global Timing Diagrams for RMAP Write and Read Commands

	Prototyping the Design on Microsemi ProASIC3E Starter Kit FPGA
	Overview
	I/O Banks Configuration
	Soft ARM Support
	RAM Inference
	SpaceWire Rx Clock Recovery Constraints
	Verification and Results
	Simulation
	Area Summary
	Prototype Assembly and Testing

	Areas for Improvement

	Conclusions
	Essential RTL Design Practices Used
	Reset Synchronizer
	Two-Process Design Method

	Bibliography

