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Abstract

Automated pavement distress detection is an important but challenging task towards
the goal of timely road maintenance. Given the vastness of road networks across
the world, there is a lot of labor involved in manual defect detection for roads.
In the recent years, however, convolutional neural networks have been shown to
achieve groundbreaking results in the field of image classification. This thesis seeks
to research and develop methods for applying convolutional neural networks to
pavement distress detection for sections of orthophotos (orthoframes) with a large
resolution. To address GPU memory limitations and increase detection localization,
a sliding-window approach is used to partition the orthoframe into 224× 224-pixel
segments, which are subject to binary classification. However, the sliding-window
approach does not allow for the model to account for the context surrounding the
segment and results may suffer due to the small window size. This thesis proposes
a ResNet architecture based convolutional neural network which accounts for two
inputs streams, one of which is the 224× 224-pixel content segment, which is subject
to classification, and the other is the downscaled context view around the content
segment. Experiments on two different datasets show an increased classification
accuracy for the two-stream approach compared to the single stream approach.

The thesis is written in English and it contains 58 pages of text, 7 chapters, 5 tables
and 19 figures.

4



Annotatsioon

Sõiduteede automaatiseeritud defektide tuvastamine on oluline, kuid keeruline üle-
sanne, et tagada teede õigeaegne hooldus. Arvestades teedevõrgustike ulatuslikkust
globaalsel tasandil, kulub teede defektide käsitsi tuvastamisele suur hulk tööjõudu.
Teisalt on viimastel aastatel konvolutsioonilised närvivõrgud näidanud piltide klas-
sifitseerimise valdkonnas murrangulisi tulemusi. Käesoleva väitekirja eesmärk on
uurida võimalusi ja lahendusi, et rakendada konvolutsioonilisi närvivõrke sõiduteede
defektide tuvastamiseks, kus lähteandmeteks on suure resolutsiooniga ortokaadrid.
Suurendamaks defektide tuvastuse lokaliseeritust ja mahutamaks sisendandmed GPU
mällu, tükeldatakse ortokaadrid 224×224-pikslisteks segmentideks, mis saavad olema
binaarse klassifikatsiooni lähteandmeteks. Antud lähenemise nõrkuseks on asjaolu,
et arvesse ei võeta segmenti ümbritsevat konteksti, mis võimaldaks klassifikatsiooni
protsessile kaasa aidata. Käesolevas töös pakutakse välja ResNet arhitektuuri baasil
töötav konvolutsiooniline närvivõrk, millel on kaks sisendvoogu. Üheks sisendiks
on 224 × 224-piksline segment, mille põhjal toimub klassifitseerimine ning teiseks
sisendiks on vastavat segmenti ümbritsev kontekstivaade. Kahel andmestikul läbivi-
idud eksperimendid näitavad, et antud kahe vooga konvolutsiooniline närvivõrk on
suurema klassifitseerimistäpsusega, kui ühe vooga närvivõrk.

Antud lõputöö on inglise keeles ning sisaldab teksti 58 leheküljel, 7 peatükki, 5 tabelit
ja 19 joonist.
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Nomenclature

ConvNet Convolutional Neural Network
CUDA Compute Unified Device Architecture
FN False Negative
FP False Positive
GIS Geographic Information System
GNSS Global Navigation Satellite System
GPU Graphics Processing Unit
ILSVRC ImageNet Large-Scale Visual Recognition Challenge
LIDAR Light Detection and Ranging
MCC Matthews Correlation Coefficient
RGB Red, Green, Blue
TN True Negative
TP True Positive
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1. Introduction

Road cracking and other types of pavement defects are a hindrance to the vehicles
using the road and need to be identified in order for the road to be maintained
timely. In Estonia, the distress on roads is amplified by the extreme temperature
shifts taking place throughout the year, which means roads need to be inspected
with a high frequency.

Reach-U Ltd, a company offering solutions in industries related to GIS and cartogra-
phy, created a method to acquire panoramic photos and orthophotos via cameras
mounted on a car in motion [4]. From the captured panoramic photos and derived
orthophotos, trained personnel are used to mark down the defects with their cate-
gories and bounds. With current methods, a human is able to cover from 3 to 20
kilometres of road per day. However, given that as of January 1st, 2019, Estonia
had a total of 40 610 kilometres of public roads, manual annotation of all roads is
a massively laborious task. Moreover, it is also prone to human error due to, e.g.,
fatigue or change blindness [5].

With a growing amount of research in computer vision algorithms over the past
decades, researchers have also begun investigating ways to apply computer vision
techniques to automate the task of pavement distress detection. Fueled by the
increasing computational resources due to more efficient hardware, convolutional
neural network based algorithms have become particularly popular for image based
road analysis [6, 7, 8, 9].

1.1. Objectives and Contributions

Using the data provided by Reach-U Ltd. and the computational resources provided
by the department of computer control of Tallinn University of Technology, the
objective of this work is to research and experiment with deep learning based
computer vision techniques in order to come up with a a model that is capable
of identifying road defects from orthophotos. Specifically, the task is to create a
binary classifier for partitioned segments of the orthophoto with convolutional neural
networks, which outputs whether the given input segment contains a road crack or
not.
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This thesis seeks to contribute by improving upon the previously proposed sliding-
window classifier [10] by incorporating an additional image input stream for the
classifier. The newly proposed two-stream approach addresses some of the shortcom-
ings of the single stream sliding-window approach, which does not take into account
the contextual information surrounding the partitioned segment input.

1.2. Thesis Outline

Chapter 2 begins with a literature review of research related to the one presented in
this thesis. Then, the reader is given introductory concepts of deep learning based
modeling and a brief review of software frameworks for deep learning is reviewed, in
which the software choices of this work are justified. Lastly, the process of acquiring
orthophotos provided by Reach-U Ltd. will be explained.

Chapter 3 covers and justifies steps taken to prepare the acquired orthophotos for
deep learning tasks. This includes orthophoto analysis, data preprocessing and
generation of datasets.

In Chapter 4, the reader is introduced to convolutional neural network based modeling
in detail. Accompanied with theoretical knowledge are also the choices made for
the models trained in this thesis. At the end of the chapter, an architecture for a
convolutional neural network is presented for pavement defect detection.

In Chapter 5, a two-stream convolutional neural network based architecture is
presented to address some of the shortcomings of the simpler architecture seen in
Chapter 4.

Finally, in Chapter 6, all of the models trained in the context of this work are
evaluated with their obtained performance metrics. Advantages and drawbacks of
the best performing approaches are analyzed on a case-by-case basis.
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2. Background

2.1. Related work

2.1.1. Automated pavement distress detection

Automating the process of identifying road defects from images has been in the
interest of academic literature for the past few decades. Earlier approaches in this
subject involved techniques such as elaborate image-enhancement algorithms [11],
neural networks in conjunction with thresholding and moment invariants [12], wavelet
transforms [13] and numerous others. More recently, convolutional neural network
based models have dominated the field of research, as they have become vastly better
at arbitrary image classification tasks than other methods.

In 2018, Gopalakrishnan [14] analyzed 12 recent papers on deep learning based
pavement image analysis, highlighting different strategies and common difficulties
in this task. The author concluded that interest in deep learning applications for
pavement distress was rising fast, as two papers were published in 2016, seven in
2017 and three in 2018 (up to March). Nearly all of the published works on pavement
distress in this timeframe included the usage of convolutional neural networks. The
main difficulties in this task were concluded to be presence of shadows, ambiguity of
defects in photos and illumination issues, which makes automated pavement distress
detection still an open problem.

Like this work, many of the papers published in crack detection use a sliding-window
approach, where the raw image is first segmented into small windows and predictions
are made per segment [6, 9]. Zhang et al. [15] proposed an additional high-resolution
analysis for segment-based classification, by combining the cracking classification
and detection networks.

Notably, our team showed that convolutional neural networks are a feasible solution
for segment-based classification of road cracking by utilizing methods of transfer
learning to accelerate the training process [10]. The dataset and models used in that
work are partially overlapping with the ones presented in this thesis.
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To the best of author’s knowledge, context-aware methods for segment classification
have not been researched for the task of pavement distress detection, as many of the
public pavement orthophoto datasets seem to only include smaller segments of the
road without extra context. The public datasets reviewed include CRACK500 [8],
GAPs384 [16], CFD [17], AEL [18] and cracktree200 [19]. All of these datasets were
accessed from the public repository provided by Yang et al. [20].

2.1.2. Multi-stream convolutional neural networks

In 2016, Liu et al. implemented a two-stream convolutional neural network for fine-
grained image classification [21]. They extracted features from a given image with
two VGG-16 networks [22] in order to capture both the object to be segmented and
the background in separate streams. The two feature extractors were connected at
the classification layer to produce the final output. They showed that this approach
improves the results for tasks such as flower and bird species segmentation due to
the separated streams for context and content information.

Pang et al. [23] noted that simple convolutional neural networks are not well suited
for the task of small object detection from high-resolution images, thereby proposing
an improvement to the segment-based classification by using a convolutional neural
network with a global attention block, which reduced false positives in large-scale
remote sensing images.

There are similarities between the task of pavement distress detection from or-
thoframes and healthcare related problems such as tissue cell classification based on
high resolution microscopy images. Namely, in both tasks, high resolution of the
image prevents them from being transferred into the GPU memory in its entirety and
the important details for classification might be located in a very small portion of the
image. To address these hurdles, Tomita et al. [24] proposed a method of classifying
segments of the whole-slide microscopy images by incorporating grid-based attention
from nearby segments. Their approach showed an improved result compared to
the typical sliding window segment-based approach. Similarly, Shaban et al. [25]
proposed a method to incorporate contextual information from the 1792× 1792-pixel
image for a 224× 224-pixel segment classifier for colorectal cancer histology images.
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2.2. Machine learning and deep learning

Machine learning is the study of algorithms which are able to deal with tasks
without having been explicitly programmed [26]. A common machine learning task
is supervised learning, in which the machine is “taught” to classify inputs by learning
from previously annotated training data.

The goal of supervised learning is to produce a classifier that is able to generalize well
enough to produce correct labels for new input data from a distribution similar to
the training data. To accomplish this, the annotated training data needs to be large
enough to enable the model to encode relevant dependencies between its internal
variables [27].

Overfitting or inability to generalize beyond the training data is a common pitfall in
machine learning algorithms, which can be caused by models that are overparame-
terized, lack regularization or are overtrained on an insufficient training data. On
the other hand, underfitting can occur when the model is incapable of capturing the
pattern we are trying to model due to insufficient or improper parametrization [2].
Therefore, a robust machine learning model is one which finds the optimal regime
between overfitting and underfitting.

With machine learning, it is necessary that the most relevant features of the source
data are extracted in order to avoid the curse of dimensionality [28]. However, for
deep learning based models, such as artificial neural networks, feature extraction is
performed by the model.

2.3. Artificial neural networks

Inspired by biological neural networks of animal brains, the artificial neural network
is a black-box modeling technique that is increasingly commonly used in the field
of deep learning. The basic building block of the neural network is the node called
neuron, which produces an activation in response to inputs that can then be used as
an input for another neuron or a function. The output of a neuron can be written as:

y =
n∑

i=1

xiwi + b, (1)
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where xi is the i-th input, wi is the i-th input weight and b is the bias. To allow for
modeling non-linear relationships, the neuron’s output is also fed through a nonlinear
activation function such as the sigmoid function.

By training the network, our goal is to optimize the weights and biases of the
collections of neurons such that they would provide a better approximation for our
desired function (this is expanded upon in Section 4.5.1).

According to the universal approximation theorem, the neural network is capable
of approximating any continuous function with only a single layer of neurons and
nonlinear activations, with the caveat that reaching the correct states for the neurons
might not be learnable by known techniques [29]. Most commonly, though, the
neurons are arranged in layers (refer to Figure 1), which results in an increased
ability to model complicated functions.

Input Hidden layers

Output

...

...

Figure 1. A fully connected neural network with 4 inputs, 2 hidden layers and 2 outputs.

2.4. Convolutional neural networks

Convolutional neural networks or ConvNets are a family of neural networks that
were designed to process visual data by applying the convolution filter to its input.
The core idea behind the ConvNet is to arrange these filters in such a way that
meaningful features are possible to be extracted from any data that is arranged in a
grid, such as an image. By processing the input through a filter, we obtain a new set
of features from the initial image that can then be used as an input for another filter
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to process, therefore extracting finer features with each passthrough. This process is
inspired by how the visual cortex of the mammalian brain works [30].

The benefits of convolutional neural networks include:

• Computational efficiency. To process a 3-color 224× 224-pixel image through
a fully connected feed-forward neural network, we would begin with 150528
inputs. If we were to have a single layer of a 1000 neurons, we would be
required to optimize around a 150 million parameters just for a single hidden
layer. Meanwhile, a typical ConvNet architecture has around 1 to 100 million
parameters in total that need to be optimized for the entire network, thus being
more memory efficient than the fully connected feed-forward neural network.

• Shift invariance. As the convolutional filters parse the image with a small
window size and a certain step, they are able to detect the patterns anywhere
in the input without discrimination.

Commonly, the features obtained through the layers of convolutional filters are used
as inputs for a fully connected neural network (as seen in Figure 1), which outputs
the classification result.

2.4.1. Prominence of ConvNets in image classification

While ConvNets were used in practice as early as 1998 with the LeNet architecture
for classifying 32x32 resolution hand-written digits [31], they remained unpopular
for years to come due to their large computational costs. It was until around 2010,
when Ciresan et al. won multiple image recognition competitions [32, 33, 34] by
training ConvNets with GPU acceleration from Nvidia’s CUDA, which accelerated
the training process by 40 times.

Therefore, a big boost to ConvNet performance came from the advancement of
GPUs to accelerate matrix computations, which is what Krizhevsky et al. also took
advantage of in 2012. They demonstrated the capabilities of ConvNets with ImageNet
Classification with Deep Convolutional Neural Networks [35], achieving a 37.5% error
rate on a 1000-class classification problem, thereby winning the ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) in 2012 [36]. Since then, computer vision
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solutions of image classification problems have been dominated by convolutional
neural networks trained on GPUs.

2.5. Software frameworks for deep learning

As deep learning based ideas have become more and more prominent both in academia
and industry, there has also been an increase in the variety of different software
frameworks that make it simpler to implement different deep learning solutions.

Most of the popular frameworks nowadays serve as libraries for the Python pro-
gramming language [37], which is prefered due to its easy to understand code, big
community and built-in libraries. As for other possible languages to consider, R [38]
is a popular language among statisticians for statistical computing and data mining.
MATLAB [39] with its machine learning toolbox is well-developed that could be
used for prototyping purposes, as well as visualization of data. However, specifically
for training deep neural networks, Python seems to be the most popular choice
nowadays. For example, in the review of deep learning based pavement analysis
papers by Gopalakrishnan [14], at least 11 of the 12 analyzed studies used a deep
learning framework written for Python interface (one of the studies had not specified
used libraries).

The most popular deep learning frameworks for Python include Tensorflow [40], Keras
[41], PyTorch [42], Theano [43] and Caffe [44]. For the purposes of this work, the
ease of ability to prototype with different convolutional neural network architectures
was considered the key criterion in choosing the framework. The fastai library [45],
which uses PyTorch as backend, was used for experimenting with transfer learning
based ConvNet architectures, as it provides “out of the box” support for ConvNet
training of various architectures. For more custom designs such as the two-stream
ConvNet, it was decided to use PyTorch. In the past few years, PyTorch has been
well-received in the academic community [1], as indicated by the amount of mentions
in arXiv papers in Figure 2.
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Figure 2. Percentage of arXiv deep learning papers that mention PyTorch [1].

2.6. Mobile mapping system for pavement analysis

In order to facilitate road analysis digitally, Reach-U Ltd. developed a mobile
mapping solution for cars, which enables the possibility of capturing panoramic
photos and geospatial data from a car that is travelling up to 80 km/h. The car is
equipped with a LIDAR system (Light Detection and Ranging) for the purposes of
generating a point cloud dataset and camera system to capture visual information and
a GNSS (Global Navigation Satellite System) to match the geographic coordinates
with the acquired images. In the context of this work, we will not be using data
from the LIDAR system as we are focused on the techniques of image classification.

Therefore, the relevant components of acquiring high quality orthophotos with their
geographic coordinates are:

• Ladybug 5+ spherical imaging system capturing panoramic photos at a reso-
lution of 30 megapixels. A pixel 10 m from the camera would correspond to
an area with a diameter of 0.78 cm, giving us sufficient detail to analyze the
pavements for distress from the photos.

• GNSS (Global Navigation Satellite System) to gather geographical data for
taken photos. With the real-time kinematic positioning technique, it is capable
of achieving a positioning accuracy of 10 cm.

• Reach-U software for synchronizing GNSS and image collecting systems.
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Figure 3. Acquiring orthophotos from panoramic photos.

2.7. Producing orthophotos

After the panoramic photos of the road are captured, they are able to be “stitched”
together by applying a projective transformation technique, the result of which is
depicted in Figure 3. Thus, it is possible to view long sections of the road in a
single high-resolution image, while the image is also accompanied by its respective
geospatial information, allowing us to match precise geographical coordinates of
given roads. The exact algorithm of this process is part of the proprietary software
developed by Reach-U and hence will not be discussed in this thesis.
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3. Data acquisition methodology

3.1. Analysis of the orthophotos

While the level of detail captured in the generated images by the Reach-U mobile
mapping method is vastly superior compared to satellite orthophotos, we are still
left with various problems that may hinder the evaluation process of the roads:

• Cars, pedestrians or cyclists can be captured in the photos, covering patches of
roads. In addition, these unwanted sections of the image might be enlarged
because of the projective transformation applied to the panoramic photos.

• Inconsistent quality across sections of the images. Parts of the photos that were
further from the camera are inevitably less detailed. Past a certain distance,
the road cracks might even become indistinguishable from the road texture.

• The images suffer from various shadows cast on the road. Depending on the
relative position of the sun, the shadows could also be cast by the vehicle that
is used for taking the photos, leaving trails of shadows (this can be noticed in
the output of Figure 3).

• Misalignment of the road due to stitching. This was especially noticeable upon
close inspection of road markings (see Figure 4).
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Figure 4. Persistent camera shadows and misaligned stitching from a generated orthophoto.

3.2. Orthophoto preprocessing and annotation

As described in our previous research [10], we decided to focus on smaller 4096×
4096-pixel portions of the generated orthophotos, which shall be refered to as the
orthoframes. This choice was made to eliminate the misalignment issues due to
stitching. In addition, the orthoframe is further reduced in size by applying a mask
with the radius of 1500 pixels to the center of the frame. This is done because the pixels
closer to the center were closer to the camera and thus more detailed. Fortunately,
this reduction did not result in “blindspots” between consecutive orthoframes, as
they were already partly overlapping.

The provided dataset of Estonian roads had each of its orthophotos supplied with
manually marked lines or bounding boxes of the defects, in the format of a shapefile.
However, a noticeable portion of these annotations were seemingly misplaced or
even missing altogether, which led our team to manually redigitize the orthoframes
of interest. For this purpose, a mask-based annotation tool was developed by
A. Tepljakov [46], which was used to draw masks of the defects as well as the
boundaries of the road (see Figure 5).

Annotation was carried out by four members of the team and from all of the potential
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road defects, only cracks were marked down, as cracks are easiest to notice without
expertise and they are the most common form of road defect.

Figure 5. Annotation of an orthoframe with the DATM annotation tool. Blue masks drawn
correspond to defects, red masks drawn correspond to the road edge that should not be used in the
dataset.

3.3. Dataset selection

All of the orthoframes were preselected to include at least one defect, as data was
abundant and most of the orthoframes were free of defects. In total, 1572 orthoframes
were manually digitized for the purposes of our previous work [10]. Due to some
circumstances, only 1168 of these orthoframes were able to be used in this work.
These orthoframes came from 3 different roads and were used for training the models.

For monitoring the performances of the model, two different datasets were considered:

1. Validation set with 55 orthoframes, for which the orthoframes were selected
from four different sessions preselected to have crack defects. Additionally,
orthoframes with shadows, overly ambigious looking cracks or with other
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difficult circumstances were not sampled. This was also the test set used to
evaluate models in [10]. The purpose of this validation set was to calibrate
the hyperparameters of the trained models and monitor how well the trained
models generalized.

2. Test set with 90 orthoframes, for which orthoframes were randomly selected
from three different trips, without discarding any of them. This means many
of the defects are ambigious and that the orthoframes may contain shadows or
other potentially confusing circumstances that made even digitizing them a
difficult task (as seen in Figure 6). The purpose of this dataset is to evaluate
how well the models would work in realistic conditions, where none of the
orthoframes were preselected.

Figure 6. Difficult to assess part of the orthoframe belonging to test the set. The difficulties
include shadows cast by trees, obfuscated alligator cracking on the left side of the road, inconsistent
lighting, a dark patch and unclear road margins.

25



3.4. Segment generation for ConvNet training data

Typical ConvNets are able to work with fixed-size inputs and increasing the resolution
of the input results in higher GPU memory requirements, especially given that during
training it is beneficial to process batches of 8 to 64 images in parallel [47]. Therefore,
in order to use deeper ConvNet architectures, we will need to partition the orthoframe
into smaller windows that will be refered to as segments. An example is given in
Figure 7. The segments were chosen to be of size 224× 224-pixel, as bigger sizes will
have troubles fitting into the 8GB of GPU RAM that the used Geforce GTX1080
graphics card provides. The orthophoto partinioning approach for our dataset was
first proposed by Tepljakov et al. [48].

Figure 7. Orthoframe partitioned into 21 segments of size 224 by 224 pixels. The highlighted
section refers to the area of the orthoframe from which segments are extracted.

For our previous work [10], we generated N non-overlapping segments from each of the
orthoframes, such that Ndefects = Nnondefects, as deep learning networks perform best
when trained on a balanced dataset [49]. Given that the vast majority of segments
did not include a crack defect, we chose only a select few of the more represented
class (usually the “nondefected” class) randomly in order to match segment counts
per orthoframe. This sampling strategy is called undersampling.

For this work, the oversampling strategy was tried, so every possible generated
segment was included in the dataset. In order to enforce that Ndefects = Nnondefects,
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copies of the less represented class need to be made per orthoframe. The benefit
of this approach is a much larger training set as no segment is discarded from the
dataset. However, the natural concern is the lack of diverse data for the defected
segments (due to copies) and the possibility of overfitting. Interestingly, even with
imbalance ratios of over 20, the oversampling technique can work without causing
overfitting [49]. In addition, data augmentation techniques (described in Section 3.5)
are able to be used to alleviate the data diversity concern caused by oversampling.

The two-stream ConvNets developed in this work takes two 224× 224-pixel RGB
inputs. One of those inputs is the “content” segment, which is subject to classification.
The other input is the “context” segment, which gives an overview of the area around
the content segment. This is visualized as the input in Figure 8. The raw input of
the context segment has the shape [672× 672× 3] and it is resized to [224× 224× 3].
The content-context segment pairs are generated such that the content segment lies
exactly in the center of the context segment. The label for a given pair is “defected”
if over 5% of the pixels in the content segment are masked as such and “not defected”
otherwise.

Figure 8. A close up on the segmented orthoframe. For illustrative purposes, one of the content
segments (inner yellow square) is accompanied with its surrounding context area (outer yellow
square).

3.5. Data augmentation

In order to increase the robustness of deep learning based computer vision models,
it is common to apply various image operations to the input samples, which is a
way to effectively synthesize new data [2]. For example, to prevent the network from
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learning possible correlations between the road defects and the road orientation (due
to sparse data), we could apply a random rotation to the training samples. Similarly,
if many of the defects were captured in orthoframes with bright lighting conditions,
the network could create a correlation between brightness and defects, which we do
not want to happen.

Fortunately, for the case of pavement analysis from orthophotos, there are many
possible augmentation techniques that can be applied as the data is still realistic if
flipped, rotated or slightly shifted in color channel values. For the models trained in
this work, we randomly apply each training sample per training epoch with random
transformations as seen in Table 1. Potential outputs of these transformations can
be seen in Figure 9. For the two-stream ConvNet, the same transformation is applied
both to the context and the content segment per sample pair.

Table 1. Data transformations applied to each training sample (different for each training epoch).

Data transformation Probability to apply Range

Rotation 0.5 (−180, 180) degrees

Horizontal flipping 0.5 –

Vertical flipping 0.5 –

Brightness and contrast
adjustment

0.5 +/−35%

RGB value shift 0.5 +/−25%

Figure 9. The original training sample (left, framed) and its possible transformations to be used
in training.
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4. ConvNet based modeling

This chapter will go over the building blocks of the ConvNets used in this work and
also the steps taken to optimize them for the task of pavement defect classification.
As a reference, an illustration of a typical convolutional neural architecture with its
main building blocks can be seen in Figure 10.

Figure 10. A scheme of a typical convolutional neural network.

4.1. Convolution filter

The convolution filter (also known as the kernel) is a matrix of weights arranged in
N × N , where N is usually between 2 and 7. This filter acts as a window which
slides (convolves) through the width and height of the input, where in each step the
element-wise multiplication will be applied and the sum of these products will be the
value of the output (feature map). Typically, the window slides with a stride of 1,
meaning no pixels are skipped over. Larger strides can be used as a way to capture
information of the input more sparsely.

Figure 11. A 2× 2 convolution filter applied to a 3× 3 input. [2]

The filter is applied across all the channels or depths of the input. For an RGB image

29



input, the filter needs to be of shape N ×N × 3. For the layer after that, the filter
needs to be of shape N1 ×N1 × F , where F is the number of filters in the previous
layer and N1 is the width and height of the feature maps in the previous layer.

Padding is introduced to ensure all of the pixels of the input get covered by the
convolution filter and no information gets lost. Padding is usually done by augmenting
the borders of the input with either zeros or by replicating the values at the borders.

4.2. Activation function

Connecting the outputs of filters or neurons to another filter or neuron allows us to
only make linear combinations with the combined weights, therefore preventing us
from reaping the benefits of utilizing multiple hidden layers [2]. For this reason, a
non-linear activation function is crucial to have for each connection of the neural
network architecture.

Every connection except for the final classification layer in this work uses the rectified
linear unit (ReLU) as the activation function, which is a simple and fast non-linear
function. ReLU is defined as:

ReLU(z) = max(z, 0). (2)

Therefore, ReLU only retains positive inputs and discards negative inputs.

For the final layer, it is common to use the softmax activation function to attain
the probability distribution as the output of the network. The two-class softmax
function used in this work can be written down as:

softmax(zi) =
ezi

ez0 + ez1
, (3)

where z0 and z1 represent the neurons for the “nondefect” class and “defected” class
respectively.
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4.3. Pooling

The maximum pooling operation takes as an input a window (typically 2× 2) of a
given tensor and outputs the maximum singular value of the window, thus producing
a downscaled output. Like with the convolutional filter, the pooling window slides
across the width and height of the image.

The reason for downscaling the convolution maps is to learn a more global repre-
sentation of the features for the later layers [2]. The ResNet architecture (which
this thesis heavily relies upon) uses only a single max-pooling layer after the first
convolution layer [3].

Average pooling for the ResNet is used for the last convolution layer, which calculates
the average values of the elements in the pooling window.

4.4. Batch normalization and dropout

It has been demonstrated that normalizing the inputs of every layer per input batch
results in faster convergence towards the local minimum and increased generalization
[50]. For each batch, the input at a given layer is normalized by subtracting the
mean of the batch and dividing by the standard deviation of the batch. In this work,
batch normalization is applied to each convolutional and fully connected layer of the
networks.

Another commonly applied regularization technique is the dropout method [51]. The
dropout layer simply removes a portion of randomly chosen connections between
layers per training batch (usually between 25% and 75%), thus forcing the network
to learn a more generalized representation of the features during training.

It must be noted that applying both batch normalization and dropout in conjunction
may in some cases be disadvantageous [52], thus a 50% dropout is only used for the
first fully connected layer for models in this work.
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4.5. Training

Neural network training is a process which involves optimizing the weights and biases
of the network such that the network would produce the desired output with respect
to the given input. In our case, the input is a 224× 224-pixel RGB image and the
desired output is either “nondefect” or “defect”.

The models covered in this thesis were trained on a Geforce GTX1080 graphics card,
provided by the department of computer control of Tallinn University of Technology.

4.5.1. Gradient descent, backpropagation and the loss function

One of the key algorithms that has been the backbone of deep learning is the gradient
descent optimization algorithm with backpropagation. The idea of gradient descent
is to calculate the derivatives of every weight with respect to the loss function of the
output via backpropagation and then subtracting a small portion of the respective
derivative from each respective weight.

The cross-entropy loss function was used in training the models in this work:

L = −(y log(p) + (1− y) log(1− p)), (4)

where L is the cross-entropy loss, y ∈ {0, 1} is the label for the given input and
p ∈ [0, 1] is the model’s given probability for the correct label.

As is standard practice for ConvNet training, models trained in this work were
trained with the mini-batch gradient descent algorithm [53]. Training samples were
shuffled into batches of 16 and the weights were optimized according to the mean
gradients of each sample in the batch. In PyTorch, gradient computation is done for
all the parameters of the network with the backward() function.

For the optimization algorithm, Adam was used, which is a gradient-based optimiza-
tion algorithm has been shown to often work better than stochastic gradient descent
[54].
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4.5.2. Learning rate scheduling

The learning rate is the proportion of the respective derivative that is to be subtracted
from the respective weight after each processed batch. The learning rate scheduler
handles how the learning rate changes during the process of training.

For models trained in this work, the training began with a learning rate of 10−4

and decreased linearly during the training process until it reached 4× 10−5, which
happened after 5 epochs.

4.6. Transfer learning

Transfer learning refers to using models with pre-trained weights as a starting point
for the new task. By using transfer learning we are taking advantage of the fact
that filter weights trained on photographic images, even from completely different
scenarios, are likely to be a better starting point than completely randomly initialized
weights. The result is an accelerated training process and an increased ability for
generalization, due to the vast datasets they were previously trained on [55].

A common approach for ConvNets with transfer learning is to freeze the feature
extraction part so only the classification layers are optimized. Another approach
is to optimize the feature extraction layers with a different learning rate than the
classification layers. These approaches were used in our previous work [10]. However,
it became noticeable that similar results were attainable with a simpler training
scheme. Therefore, all models used in this work were fully unfrozen and trained in
one loop.

4.6.1. ResNet

All of the models presented in this work were using pretrained ResNets optimized
for the task of ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [36],
which provides 1.2 million training images with 1000 classes (such as dog breeds,
food, vehicles). For this daunting task, the ResNet-50 architecture was reported to
achieve a 20.74% error rate, which is on par with human performance [3].
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Figure 12. The residual block of the ResNet architecture. [3]

The ResNet architecture is mostly similar to the conventional ConvNet architecture
(Figure 10) but with the introduction of the residual block (Figure 12).

By using skip connections from preceding layers, the model is able to retain infor-
mation that might get lost in a network with many more layers. This results in
the ability to build very deep networks without causing them to overfit, due to the
properties of nested functions [2].

4.7. ResNet based pavement segment classifiers

Using the orthoframe partitioning approach as described in Section 3.4 and pre-
trained ResNet models provided in the fastai library, it is possible to create a model
to classify segments of the orthoframe based on the presence of defects.

In our previous work [10], the fastai library methods were used to design and train
the models for classifying segments. In this thesis, the PyTorch library approach
was prefered as it seemed more straight forward to define custom training loops and
dataloaders to experiment with.

An overview of the ResNet18 architecture for the segment classifier can be seen in
Figure 13. In addition, ResNet50 and ResNet101 models were trained to verify if
adding layers results in a better performance.

The model takes a normalized 224× 224-pixel RGB image as an input and extracts
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Figure 13. ResNet18 based pavement segment classifier.

features from it via the ResNet architecture. The normalization of the inputs is done
with respect to the means and standard deviations of the ImageNet [36] dataset.
After obtaining the final 512 7x7 feature maps, the average pooling and maximum
pooling operation are applied which results in 1024 neurons. Batch normalization
and dropout with p = 0.5 are also applied in the classification layers. For the final
layer, the softmax activation is used to get class probabilities.

The number of parameters for different ResNet models used in this work can be seen
in Table 3. Information about performances of the models can be seen in Table 2.

35



5. Two-stream ConvNet

This chapter describes the implementation of the proposed two-stream ConvNet
approach for pavement segment classification.

5.1. Motivation

While the single ConvNet based classification for pavement cracking detection already
had satisfactory results (Table 2), it did not make use of the rest of the orthoframe
in its classification process. By judging the segment of the orthoframe in isolation,
it can sometimes be difficult to assess whether the edge of the segment is partly a
crack or some miscellaneous formation (Figure 14), resulting in a false positive.

Figure 14. Case of the ResNet101 model predicting a false positive due to lack of context.

Similarly, false negatives may arise due to lack of context in the classification process,
as the cracking will be less distinct in some parts of the photo (Figure 15).
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Figure 15. Case of the ResNet101 model predicting a false negative due to lack of context.

Additionally, stemming from the fact that defects may lie at the further end of the
orthoframes, they might become very hard to distinguish due to the blurriness of
the photo, in which case it would be helpful to see the surrounding road.

Finally, during manual data annotation, it was evident that annotating with the
whole orthoframe as reference was a lot simpler, from a human perspective.

5.2. Implementation

Following the reasoning in the previous Section, it is clear that we are not using all
of the useful information given to us by simply looking at one segment in isolation.
Therefore, methods to incorporate contextual information for the ConvNet’s decision
making were considered.

Inspired by the research discussed in Section 2.1.2, it seemed like combining multiple
ConvNet feature extractors could be a feasible approach to provide the model with
contextual features. As ConvNets excel in finding relevant features and the fully
connected neural networks excel in combining features in the most relevant way, the
idea was to create a two-stream ConvNet to combine the content and the context
features.
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The proposed network architecture for the context-aware segment-based classifier
can be seen in Figure 16.

Figure 16. Proposed architecture of the ResNet18 based context-aware pavement segment classifier.

The network receives inputs in content-context pairs. The context part of the input
depicts the area around the content input. In an effort to balance the amount of
relevant context, the context input was chosen to have a diameter 3 times that of the
content input, essentially providing a zoomed out view of the content. To address
GPU memory limitations and have feature maps of the same size, the context input
was rescaled to the same dimensions as the content input.

As with the single stream model, the task of classification is to answer whether the
segment contains a crack or not. The label for a given pair is “defected” if over 5% of
the pixels in the content segment are masked as defected by the manual annotation
and “not defected” otherwise (as described in Section 3.4). Therefore, any defects
that lie outside the center of the context model do not affect the label for the input
pair.
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Relevant features of the inputs are then extracted in two different streams and the
features of the content and context streams are combined in a final fully connected
layer, to produce the prediction of the model.

Various configurations for the fully connected layers were experimented with. The
configuration presented in Figure 16 was found to give the best results as seen in
Table 2. Additionally, the results for a slightly simpler classification architecture in
which the final 1024 layer was omitted is presented in 2.
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6. Experiments and evaluation

6.1. Evaluation metrics

In order to choose the most informative evaluation metrics, we must consider the
distribution of the dataset. The accuracy of a classifier can be considered as the
sum of correctly classified segments divided by all of the segments in the dataset.
However, classification tasks in the case of severely imbalanced datasets (as in our
case) would obtain an unfairly high accuracy from a classifier that simply votes
for the majority class. Therefore, accuracy would not be a very good indicator of
performance, as the average road orthoframe has vastly more defect-free segments
than defected segments. Following this reasoning, let us consider the four possible
outcomes of any prediction:

• True positive (TP) – the segment is correctly identified as defected.

• True negative (TN) – the segment is correctly identified as non-defected.

• False positive (FP) – the segment is incorrectly identified as a defect when it
was labeled as a non-defect.

• False negative (FN) – the segment is incorrectly identified as a non-defect when
it was labeled as a defect.

Thus, it is possible to calculate the precision (5) and recall (6) metrics. In words,
the precision metric of a classifier is informative of the classifier’s ability to avoid
false positives and the recall metric tells us of the classifier’s ability to avoid false
negatives.

Precision =
TP

TP + FP
. (5)

Recall =
TP

TP + FN
. (6)
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These metrics are useful to evaluate whether our classifier has a bias towards one of
the categories, so we could adjust the defect detection threshold Pdet. In order for
an input to be classified as defected the following must hold true:

P (defect) > Pdet, (7)

where P (defect) is the ConvNet’s probabilistic output. The threshold Pdet was chosen
based on the validation set such that Precision≈Recall, which happened to be 0.6

for all models.

A metric that works well even across datasets with different class distributions is
the MCC. It is considered to be the most informative metric in the case of a binary
classification task with data imbalance [56]. MCC is able to calculated from the
confusion matrix and it is defined to be as

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
. (8)

In deciding which classifier is superior, we shall refer to the MCC, as it best captures
the classifier performance with a single coefficient.

6.2. Training phase evaluation

For the training data, a total of 56 178 samples were provided, 28 089 without cracks
and 28 089 with cracks. It should be noted that only 32 140 of the samples/sample
pairs were from a unique source segment, due to the oversampling strategy as
described in Section 3.4.

The training figures 17 and 18 provided include training accuracy and validation loss.
The reason validation accuracy was not considered a good metric is due to the class
imbalance in the validation set.

In most cases training accuracy is not very informative, as there are strategies that
achieve good results with a lower training accuracy [10] or strategies that overfit
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to training data that also achieve good results [57]. In our case, however, training
accuracies of the two-stream and single stream approaches were monitored to compare
learning abilities of the different approaches as they were subject to identical training
schemes.

A training epoch in Figure 17 and Figure 18 corresponds to 3511 batches of 16
samples (or sample pairs for two-stream models).

(a) Training accuracies (higher is better).

(b) Validation losses (lower is better).

Figure 17. Training accuracies (a) and validation losses (b) over 5 epochs for 4 different models.
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It is interesting to note that a training accuracy of over 90% was achieved in about
1500 processed batches for the two-stream models, while achieving the same training
accuracy took about 7500 batches for the single stream models. This could be
interpreted as the two-stream models learning more from the same amount of data.
Additionally, the deeper single ResNet50 model seems to achieve slightly higher
accuracies than the shallower single ResNet18 model. This phenomenon is not
noticed for the two-stream models.

Another observation can be made with regard to the validation loss. As some of
the models had their best validation losses in the earlier epochs, it seems that the
models are able to learn well enough within the first few epochs. Additionally, it
seems as if the validation loss across is volatile, which might be an indication of
the validation set being too small or not diverse enough (90 orthoframes with 1192
generated samples/sample pairs in total). Therefore, statements about validation
performance cannot be made with a high degree of certainty.

Something that is also noticeable is that the training accuracy of the solo models
is still increasing after 5 epochs. In light of this observation and the volatility
of the validation loss, it was decided to verify if the models were to benefit from
further training, so the four models were trained again for 10 epochs with a linearly
decreasing learning rate. The results of the extra training are displayed in Figure 18.
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(a) Training accuracies (higher is better).

(b) Validation losses (lower is better).

Figure 18. Training accuracies (a) and validation losses (b) over 10 epochs for 4 different models.

While training accuracies kept rising for all models from epoch 5 to 10, the validation
losses did not get significantly better or worse. Therefore it is probably the case that
an extensive amount of training is not needed to achieve the best results for our task.
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6.3. Obtained metrics and performance with different models

In total, 7 models were trained with the same random seed in order to make sure
weight initialization does not affect the results. That said, PyTorch does not guarantee
completely reproducible results even when using identical seeds, so comparison of
models should be approached with some caution (Table 2), as attempts to reproduce
the experiments gave slightly different results.

Table 2. Performance metrics of the models trained over 5 epochs with a fixed random seed.

Model Validation set (ideal
conditions)

Test set
(non-ideal
conditions)

MCC Precision Recall Precision Recall

Single ResNet18 0.85 0.87 0.88 0.69 0.62

Single ResNet50 0.85 0.88 0.88 0.69 0.62

Single ResNet101 0.86 0.88 0.89 0.70 0.62

Two-stream
ResNet18s

0.89 0.89 0.94 0.68 0.71

Two-stream ResNet50s 0.88 0.93 0.88 0.71 0.67

Two-stream ResNet50s,
simpler classification
architecture

0.86 0.90 0.88 0.68 0.69

Two-stream
ResNet101s, simpler
classification
architecture

0.89 0.90 0.92 0.61 0.64

?Best results from the previous attempts [10], using undersampling and 25% more data, were 0.87
precision and 0.90 recall for the validation set. Accuracies for the two-stream ResNet18s are 97.1%

for validation set and 96.2% for test set.

The best results for the validation and test set were produced by the two-stream
ResNet18s. Quite similar results were attained with deeper models and with slightly
different classification architectures. It seems to be the case that adding layers to
the two-stream feature extractors does not improve performance. However, for the
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single-stream models, adding layers seems to result in slight improvements. This
phenomenon was also noticed in slightly different conditions in our previous work
[10].

In addition to the performance over the validation and test sets, it is important to
consider the inference speed of the model, as predicting over large datasets could
potentially take a long time. As seen in Table 3, the better-performing two-stream
ResNet18 operates faster and has less parameters than the single ResNet101, due to
the reduced number of layers in the feature extraction stream, despite having two
input streams.

Table 3. Size and inference speed of the models.

Model Parameters Time to
predict a

segment (or
segment pair)

Time to train

Solo ResNet18 11,705,410 9.2ms 41m

Solo ResNet50 25,615,938 20.1ms 1h 22m

Solo ResNet101 44,608,066 37.5ms 2h 02m

Two-stream ResNet18s 24,067,462 17.9ms 2h 15m

Two-stream ResNet50s 51,888,518 41.2ms 3h 46m

Two-stream ResNet50s,
simpler classification
architecture

51,233,926 39.8ms 3h 32m

Two-stream ResNet101s,
simpler classification
architecture

89,218,182 76.6ms 6h 25m

6.4. Visual analysis of the results over the test set

In order to better understand the strengths and weaknesses of the best-performing
ResNet18 two-stream model, all of the false positives and false negatives over the
test set were plotted out as shown in Figure 19.
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(a) False negatives.

(b) False positives.

Figure 19. All of the false negatives (a) and false positives (b) produced by the two-stream
ResNet18s across the test set of 2011 sample pairs. The numbers above each segment indicate the
model’s P (defect). Only the content inputs are displayed.

It can be seen that many false negatives are produced due to the cracks that are
blurry or hard to distinguish. Many false negatives were also produced for segments
with less illumination. For false positives, the two-stream model confused a dark
looking patch on the road for a crack. Also, dirt or non-crack road degradation that
produced high contrast areas were mistakenly classified as defects.

All in all, the results over the test set can be considered satisfactory, as many of the
produced errors were of the segments that were also hard to annotate, indicating
that the model struggles with the same data as humans do. However, there could
be some room for improvement with regard to the model’s robustness to different
lighting conditions, as a big chunk of the errors were produced on a small section of
the dataset with darker conditions.
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It is important to point out that the task of annotating cracks manually is not an
easy one, especially with no clear guidelines. In hindsight, by looking at the outputs
of the models, many of the labels given for the samples from manual annotations
were inspected to have been wrong. To prevent the creation of a possibly biased
dataset towards the model, these segments were not re-labeled or removed but kept
as such. It follows from this that even an ideal classifier over the test set cannot be
expected to have a performance without false negatives or false positives and the
results need to be taken with a grain of salt.

6.5. Case-by-case comparisons

To have a more comparative analysis between the best performing single and two-
stream models, total proportional amount of unique false positives and false negatives
were calculated (Table 4). Interestingly, a large amount of the errors produced by
both models were on different samples, indicating that each model struggled with
different types of data.

Table 4. Comparison between the unique false positives (FP) and false negatives (FN) produced by
the best performing single model ResNet101 and the best performing two-stream model ResNet18s.

Model Validation set Test set

Unique
FPs

Unique
FNs

Unique
FPs

Unique
FNs

Two-stream
ResNet18s

41% 25% 44% 57%

Single ResNet101 43% 57% 82% 21%

To verify if the hypotheses posed in Section 5.1 held true, a closer inspection was
given to some of the segments which produced conflicting outcomes between the
single ResNet101 model and two-stream ResNet18 models. Four selected inputs with
author’s commentary can be seen in Table 5.
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Table 5. Analysis of selected inputs where single and two-stream models produce different
predictions.

Outputs Analysis

The two-stream model correctly
identifies the fuzzy lines as defects,
while the single stream model is

uncertain, producing a false negative.

The single model correctly identifies
the segment as not defected but the
two-stream model produces a false
positive. This could be due to the
close proximity with other cracks

nearby in the context view, indicating
that having the context stream might

sometimes have adverse affects.

The two-stream model correctly
identifies the segment as not defected
but the single stream model claims

there to be a defect with high
certainty (possibly due to the dark
formations). The context view

provided shows that there are no
cracks nearby.

The single model correctly identifies
the crack in the shadow-ridden image,
while the two-stream model is certain
there is no defect. One interpretation
could be that due to the dark setting
of the road and relatively thin single
crack, the context stream of the input
guides it to classify as not defected.
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7. Conclusions

It is evident that convolutional neural networks excel in the task of image classification
and the work presented in this thesis makes it clear that this also applies to pavement
distress detection. Using transfer learning, models trained in hours on a single
modern GPU achieved near human-level performance for roads without adverse
conditions such as the presence of shadows in the orthophoto. However, in situations
where the input data had non-ideal conditions, the performance suffered. Accuracy
wise, the best performances were 97.1% for the ideal conditions and 96.2% for the
non-ideal and more realistic conditions. The more realistic conditions had fewer
defects per orthoframe, so the MCC dropped more drastically than the accuracy,
from 0.89 to 0.70.

The aim of this thesis was to build a classification model for pavement distress
detection from orthophotos. To account for the large size of the orthoframe input
which ConvNet models are not well-equipped to deal with, the approach to partition
the orthoframe into segments was used. A benefit of this approach was the increased
localization of the prediction outputs. However, partitioning of the orthoframe
removed some of the potentially relevant input features for the model. Therefore, a
model was proposed which read inputs for content stream and the context stream
separately. Experiments across different datasets proved that the context-aware
two-stream approach indeed slightly outperformed the single stream approach. It
was expected that the context-aware two-stream approach would benefit mostly
in more adverse conditions but it was found to be the case that the results also
improved under ideal conditions, perhaps even more so than under adverse conditions.
However, due to the shortage of diverse data, these results need to be further verified.

7.1. Future work

Many long and short term avenues are open for future work with the attained results,
some of which are described in this Section.

Semantic segmentation has become a widely researched topic for ConvNets with
promising results [58]. This means that the ConvNet classifier could output a pixel
level prediction for a given input, vastly increasing the road crack localization of our
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current 224× 224-pixel classification approach. This approach has been tested in
numerous pavement distress related studies [16, 18, 13]. However, the downside of
this approach is a vastly more time-consuming annotation process.

With respect to the feasibility of the proposed two-stream ConvNet, it would be
interesting to validate the results on different datasets. Unfortunately, none of the
public datasets for pavement distress seemed to include a similar setting in which
large-resolution orthophotos are given. That said, this approach could be verified
for problems in different fields. For example, similar ConvNet architectures for
high-resolution medical image analysis had been proposed and verified to be superior
to the single stream sliding-window approach [24].

The datasets annotated in this work came from only about 10 different sessions in
total. Therefore, it should be verified if adding more diverse data would benefit in
training a more robust classifier. As manual annotation is an arduous and error-prone
process, methods to minimize the effort put into annotation should be used. Seichter
et al. [7] proposed incremental learning approaches to address the data diversity
problem. Their proposed approach is to gather the data that would be most beneficial
for the training data, in order to minimize human effort. This could be done by
feeding unlabeled sections of the road to the model and returning those roads where
the model has the highest uncertainty (in our case, this would mean P (defect) is
close to 0.5).

The main goal of this work was to experiment with modeling. Thus, implementing
a software solution for practical purposes was not a priority. Previously, Tepljakov
et al. developed a GUI for applying models trained in Keras [48], so the software
implementation for models developed in this work could be using the previously
developed GUI as a basis.
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Abstract

The subject matter of this research article is automatic detection of pavement dis-
tress on highway roads using computer vision algorithms. Specifically, deep learning
convolutional neural network models are employed towards the implementation of
the detector. Source data for training the detector come in the form of orthoframes
acquired by a mobile mapping system. Compared to our previous work, the or-
thoframes are generally of better quality, but more importantly, in this work, we
introduce a manual preprocessing step: sets of orthoframes are carefully selected
for training and manually digitized to ensure adequate performance of the detector.
Pretrained convolutional neural networks are then fine-tuned for the problem of
pavement distress detection. Corresponding experimental results are provided and
analyzed and indicate a successful implementation of the detector.
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