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Tallinna Tehnikäulikooli magistrikraadi taotlemiseks ja selle alusel ei ole varem taotletud

akadeemilist kraadi.

Juri Belikov

1



Contents

Abstract 4

Kokkuv õte 5
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Abstract
Synthesis and identification of nonlinear discrete-time models for

model based control

Present thesis is devoted to symbolical discretization of nonlinear continuous-time sys-

tems and application of a class of neural networks based discrete-time models to control

of nonlinear systems.

The first part of this thesis concentrates its attention on discretization theory of continuous-

time systems and especially on the theory of so called finitely discretizable systems. Be-

sides that, the author considers the implementation of the functions on the basis of the

presented theory in Computer Algebra System (CAS)Mathematica.

The second part of this thesis is devoted to the application of Neural Networks based

Additive Nonlinear Autoregressive eXogenous (NN-based ANARX) structure to identifi-

cation and control of nonlinear systems. The advantage of using this structure lies in the

fact that it is always linearizable by dynamic output feedback as well as representable in

a classical state-space form. Different approaches for calculation of control signals by us-

ing NN-ANARX based dynamic output linearization algorithmare also considered. The

effectiveness of presented techniques is demonstrated on numerical examples.

All calculations and simulations shown in this thesis are performed inMathematicaand

MATLAB/Simulink environments.
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Kokkuv õte
Mittelineaarsete diskreetaja mudelite identifitseerimine ja süntees

mudelil põhineva juhtimise jaoks

Käesolev väitekiri käsitleb mittelineaarsete pidevaja süsteemide sümboolset diskretiseer-

imist ning ühe tehisnärvivõrkudel põhineva diskreetaja mudelite klassi rakendust mitte-

lineaarsete süsteemide juhtimiseks.

Väitekirja esimeses osas on vaadeldud pidevaja süsteemide diskretiseerimise teooria kusju-

ures erilist tähelepanu on pööratud lõplikult diskretiseeritavatele süsteemidele. Esitatud

teooria on rakendatudMathematica-s autori poolt kirjutatud funktsioonide kujul.

Teine osa on pühendatud tehisnärvivõrkudel baseeruva ANARX (Additive Nonlinear Au-

toregressive eXogenous) struktuuri rakendamisele mittelineaarsete süsteemide identifit-

seerimiseks ja juhtimiseks. Selle struktuuri eeliseks juhtimissüsteemide projekteerimise

seisukohast seisned selles, et ta on alati lineariseeritavdünaamilise tagasiside abil ning

on esitatav klassikalise olekuruumi kujul. Töös on ka antud ülevaade erinevatest juh-

timisssignaali arvutamise meetodist ANARX mudelil põhinevates juhtimissüsteemides.

Lisaks olemasolevatele meetoditele autori poolt on väljatöötatud kaks alternatiivset al-

goritmi, mis võimaldavad suurendada mittelineaarsete s¨usteemide klassi, mille ANARX

mudelil põhineva juhtimisalgoritm on rakendatav. Tööskäsitletud meetodite efektiivsus

on demonstreeritud mitmetel numbrilistel näidetel.

Kõik töös esitatud arvutused ja simulatsioonid on teostatudMathematicaja MATLAB/

Simulink keskkondades.
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Chapter 1

Introduction

1.1 State of the Art

1.1.1 Discretization

During the second half of the 20-th century computers start to grow rapidly and become

more and more popular. As a result of the proposed computational power and programma-

bility, they infiltrated into all spheres of human activity.For example, computers may be

found in different places ranging from battleships to industrial robots, medical tools, and

children’s toys. Furthermore, the development of the software has begun. The scientific

disciplines do not remain in the party too.

In the latter half of 1980’s on a world scene appears a new Computer Algebra System

(CAS) Mathematica. By the moment of its occurrence in the market of the commercial

and free-of-charge software there were already well established software giants such as

Maple, Maxima, etc. Thanks to several benefits ofMathematicalike the symbolic com-

putational power and attractive graphical user interface,it has become widely applied in

different research areas and teaching courses. To the present moment this is a one of the

most popular programs in its class.

This thesis describes severalMathematicafunctions implemented by the author intoNL-

Control package [23] that allow to compute symbolically exact or approximate discrete-

time models of continuous-time nonlinear controlled systems. These functions implement

7



the theoretical results of [2], [10] and [18]. The need for discrete-time models comes from

the fact that though most physical systems evolve in continuous-time, most model-based

control schemes are implemented digitally. In principle, of course, the digital controller

can be obtained just by sampling the continuous-time controller. This approach, though

still most common, may be unsuitable for slow sampling rates. Moreover, fast sampling

intersects with quantification of signals and may yield complex effects that degrade the

system performance [27] and numerical errors [3].

1.1.2 Neural Networks

The history of mathematical models of biological neurons begins in 1943, when McCul-

loch and Pitts formalize the concept of a neural network in the fundamental article about

logic calculation of ideas and nervous activity [25]. Afterthat in 1949 Hebb offers the first

training algorithm. However, the real beginning of neural networks starts in 1962, when

Rosenblatt introduces the concept of a perceptron [41]. It is used for pattern recognition,

forecasting of weather, etc. It seemed that the construction of a full-fledged artificial in-

telligence is just around the corner. But, in 1969 Minsky publishes the formal proof of

limitation of the perceptron and shows, that it is unable to solve some problems (the prob-

lem of ”parity” and ”one in the block”), connected with invariancy of representations. In

a light of these events, and also that neural networks demanded greater computing capac-

ities, interest to them sharply falls. The period of declinewas long enough. However,

in 1980’s notions of the network minimizing energy and self-organizing map were intro-

duced. Since the middle of 1980’s a new round of development of neural networks begins.

Except a new theoretical discoveries, this was promoted also by elimination of one of the

main problems, namely a lack of computing power. Modern hightechnologies allow for

reasonable time to create and train a neural network of almost any complexity.

During a long time scientists have been concentrated on approximation capabilities of

neural networks. However, at the same time, little attention was paid to the structural

aspects. Applications of the specific neural network with socalled ANARX structure for

identification and control of nonlinear systems are considered in this thesis. ANARX is a

subclass of well known NARX models and has all time instancesseparated. This structure
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has a number of advantages, which in more detail are considered in Chapter 5.

1.2 Outline of the Thesis

The thesis is organized as follows. Chapter 2 contains a brief summary of mathematical

tools used in the next parts of the thesis. It describes notions of input-output and state-

space multi-input multi-output systems. While the second type is more used in the first

part of the thesis, the first one is required only in Chapter 5.Both continuous- and discrete-

time cases are considered.

Chapter 3 discusses the basic discretization theory of continuous-time nonlinear systems.

Besides that two techniques, which allow one to obtain the exact or approximate discrete-

time models, are presented. Additionally, in this chapter some of the standard facts con-

nected to the finitely discretizable and nilpotent systems are reviewed. For the conve-

nience of the reader the author repeats the relevant material without proofs, thus making

this thesis self-contained. At the end of the chapter the general scheme of construction

of a discrete-time model is presented. Furthermore, it establishes the relations between

programmed functions, which are considered in the next chapter.

Chapter 4 contains a description of programmed functions and instructions for their ap-

plication. Five different functions are considered. Each of them describes an execution

algorithm and application instructions with all necessaryinformation about arguments,

their types etc. Additional possibilities and joint work ofthe functions are drawn in the

end of the chapter.

In Chapter 5 the notion of neural networks based ANARX structure is presented. Its

advantages over the classical NARX model are also discussed. NN-based ANARX struc-

ture is used for identification and control of nonlinear systems. Additionally, the different

solutions of the problem of the control signal calculation proposed in the previous re-

searches are summarized. Finally, the practical application of the presented techniques is

demonstrated on the basis of numerical examples.

Concluding remarks and subjects for the further research and development are presented

in the last chapter.
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Chapter 2

Notations and Definitions

The modern control theory operates with many concepts by applying definitions and the-

orems from various scientific disciplines. Therefore, thischapter will serve as a brief

introduction of only basic notations, which will be important throughout the whole thesis.

2.1 Nonlinear Systems

In this section the author has compiled some basic facts of nonlinear continuous- and

discrete-time systems. At the beginning, the notion of the input-output system is pre-

sented following [35]. After that, the state-space representation of the system is consid-

ered according to [26].

2.1.1 Input-Output Systems

In general, the relationships between the inputu and the outputy signals of a system can

be represented by the differential equations

f(y, ẏ, . . . , y(n), u, u̇, . . . , u(n)) = 0 (2.1.1)

in the continuous-time case or by the difference equations

f(y(k), y(k − 1), . . . , y(k − n), u(k), u(k − 1), . . . , u(k − n)) = 0 (2.1.2)
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in the discrete-time case. Both in (2.1.1) and (2.1.2)u = (u1, . . . , ur) ∈ R
r is a vector of

system inputs,y = (y1, . . . , ym) ∈ R
m is a vector of system outputs,f(·) are real analytic

functions. Equations (2.1.1) and (2.1.2) are called the input-output form of the system.

2.1.2 State-Space Systems

The majority of nonlinear systems, that can be modeled, are represented by a finite number

of the state equations

ẋ = f(x, u)

y = h(x)
(2.1.3)

in the continuous-time case or by

x(k + 1) = f(x(k), u(k))

y(k) = h(x(k))
(2.1.4)

in the discrete-time case. Both in (2.1.3) and (2.1.4)x = (x1, . . . , xn) ∈ R
n is a vector of

state variables,u = (u1, . . . , ur) ∈ R
r is a vector of system inputs,y = (y1, . . . , ym) ∈

R
m is a vector of system outputs,f : R

n × R
r → R

n andh : R
n → R

m are real analytic

functions. Equations (2.1.3) and (2.1.4) are called the state-space representation of the

system.

Taking into account topics and character of the first part of this thesis, the state equations

(2.1.3) and (2.1.4) can be rewritten in the following way

ẋ = f(x, u) (2.1.5)

in the continuous-time case and

x(k + 1) = f(x(k), u(k)) (2.1.6)

in the discrete-time case.

Notice that there are two main classes of systems used in present thesis, namely single-

input single-output (SISO) systems in case ifr,m = 1 and multi-input multi-output

(MIMO) systems in case ifr,m > 1.
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Chapter 3

Discretization of Continuous-time

Nonlinear Systems

The purpose of this chapter is introduction of some conceptsof discretization theory. The

chapter is organized as follows. Section 3.1 represents thenecessary discretization the-

ory. After that, Sections 3.2 and 3.3 provide a detailed exposition of two discretization

methods. Next, in Section 3.4 we introduce the basic definitions of finitely discretizable

systems. Besides that we recall notions of dilation and homogeneous degree, and a suffi-

cient condition of finite discretization is also considered. Finally, Section 3.5 represents

the basic theory of nilpotent systems. The theory describedbelow is based on [2], [10],

[15] and [26].

3.1 Discretization

Often times discrete-time systems originate by ”sampling”of a continuous-time systems.

This is an idealized process in which, for the given continuous-time systemΣ : u → x

(a dynamical system that maps the inputu into the statex, as shown in Figure 3.1(a)) we

seek a new systemΣd : u(k) → x(k) (a dynamical system that maps the discrete-time

signalu(k) into the discrete-time statex(k), as shown in Figure 3.1(b)).

Both systemsΣ andΣd are related in the following way. Ifu(k) is constructed by taking

”samples” everyT seconds of the continuous-time signalu, then the outputx(k), pre-

12



x(k)u(k)
Σd(b)

x(t)u(t)
Σ(a)

Figure 3.1: (a) Continuous-time systemΣ; (b) discrete-time systemΣd

dicted by the modelΣd, corresponds to the samples of the continuous-time statex(t) at

the same sampling instances.

u(k)
H

u(t)
Σ

x(t)
S

x(k)

Figure 3.2: Discrete-time systemΣd

To develop such kind of model, one can use the scheme shown in Figure 3.2, which

consists of the cascade combination of the blocksH, Σ andS, where each block in the

figure represents the following:

• S represents asampler, i.e. a device that reads the continues variablex everyT sec-

onds and produces the discrete-time outputx(k), given byx(k) = x(kT ). Clearly,

this block is an idealization of the operation of an analog-to-digital converter. For

easy visualization, continuous and dotted lines were used in Figure 3.2 to represent

continuous and discrete-time signal, respectively.

• Σ represents the plant, seen as a mapping from the inputu to the statex, the map-

pingΣ : u→ x determines the trajectoryx(t) by solving the differential equation

ẋ = f(x, u) . (3.1.1)

• H represents ahold device that converts the discrete-time signal or sequenceu(k),

into the continuous-time signalu(t). Clearly, this block is implemented by using a

13



digital-to-analog converter. One can assume an ideal conversion process takes place

in whichH ”holds” the value of the input sequence between samples (Figure 3.3),

given by

u(t) = u(k)

for kT ≤ t < (k + 1)T .

b

b

b

b

b

b

t

x(t)

0 T 2T 3T 4T 5T

k

x(k)

· · ·

0 1 2 3 4 5

Figure 3.3: Action of the hold deviceH

In other words, the basis on which discrete-time model is derived from continuous-time

system is the assumption thatu(t) in (2.1.5) is kept piecewise constant and does not

change between the equidistant sampling instants. The discrete-time model relates the

sampled state of the continuous-time system at the end of sampling period to the sampled

state at the beginning of the sampling period and the sampledinput. The relation between

the continuous-time system and discrete-time model is given by the fact that the states

of the discrete-time model at sampling instants(k + 1)T are equal to the solution of the

differential equation (2.1.5) at timet = (k + 1)T , starting at timet = kT in x(kT ) and

with a constant controluk = u(kT ) applied so that derivatives of control will be zero.

Clearly, the sampled-data representation depends on the sampling timeT . This model is

one of the most popular for implementing discrete-time systems, because of its simplicity.

Usually it is impossible to find the exact discrete-time model of the nonlinear plantΣ

given by (2.1.5). The reason is that finding the exact solution requires solving the nonlin-

ear differential equations, what is very difficult or impossible in general. Given this fact,

one is usually forced to use an approximate models. There areseveral different methods

of constructing exact or approximate discrete-time models, but we introduce only nota-
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tions of so called Integration method and Taylor series expansion method, which will be

described in Sections 3.2 and 3.3, respectively.

3.2 Direct Integration Method

This section describes how to obtain the exact discrete-time model from a continuous-

time system using Integration method. In order to find the discrete-time model, one has

to solve the equation (2.1.5) over the sampling half-closedinterval [kT, kT + T ) under

the assumption that during this intervalu(t) is kept constant. In principle, one may ap-

ply Mathematicabuilt-in functionDSolve to find the solution. Unfortunately, equation

(2.1.5), in general, cannot be solved exactly and hence the exact discrete-time model is

not available except a few simple cases. Additionally toDSolvewe have written another

function that tries to solve the state equations in the special block triangular form

ẋ[i] = Aix[i] + f[i]

(

x[1], . . . , x[i−1], u[i]

)

, i = 1, . . . , r (3.2.1)

step by step, starting from the first subsystem. In (3.2.1),x[i] ∈ R
ni andu[i] ∈ R

mi are

the vectors of states and inputs of thei-th subsystem, respectively. Some subsystems

may have same, different or none control input. Note that in [2] it has been proved to

be possible to solve (3.2.1) under the assumption thatf[i]’s in (3.2.1) are polynomial

functions, though this assumption is not necessary (see example 4.2.2).

An example is given below to illustrate the theory reviewed above.

Example 3.2.1Consider the system [10]

ẋ1 = u

ẋ2 = x1

ẋ3 = x2 + x2
1

. (3.2.2)

According to the theory given above, the discrete-time model can be obtained by consis-

tent integration of each state of the system. First of all, wefind the definite integral of the

first state variablėx1 as follows

x1 :=

∫ t

0

ẋ1dt = x1(0) +

∫ t

0

udt = x1(0) + tu. (3.2.3)

15



Then, we make analogous calculations for theẋ2, but replacex1 with obtained on the

previous step expression (3.2.3)

x2 :=

∫ t

0

ẋ2dt = x2(0) +

∫ t

0

x1dt =

= x2(0) +

∫ t

0

(x1(0) + tu)dt = x2(0) + tx1(0) +
t2

2
u. (3.2.4)

After that

x3 :=

∫ t

0

ẋ3dt = x3(0) +

∫ t

0

(x2
1 + x2)dt =

= x3(0) +

∫ t

0

(

(x1(0) + tu)2 + x2(0) + tx1(0) +
t2

2
u

)

dt =

= x3(0) + tx2
1(0) + t2x1(0)u+

t3

3
u2 + tx2(0) +

t2

2
x1(0) +

t3

6
u. (3.2.5)

Finally, using equations (3.2.3)-(3.2.5), the exact discrete-time model is described by the

following equations

x1(kT + T ) = x1(kT ) + Tu(kT )

x2(kT + T ) = x2(kT ) + Tx1(kT ) + T 2

2
u(kT )

x3(kT + T ) = x3(kT ) + Tx2
1(kT ) + Tx2(kT ) + T 2

2
x1(kT )+

+ T 2x1(kT )u(kT ) + T 3

6
u(kT ) + T 3

3
u2(kT )

.

3.3 Taylor Series Expansion Method

This section explains how to obtain the discrete-time modelfrom the continuous-time

nonlinear plant using Taylor series expansion method. As was mentioned above, the

nonlinear ordinary differential equations in general, cannot be solved exactly and hence

the exact form of the sampled data model is difficult to obtain. However, if the system

(2.1.5) has no closed-form solution, one can express the solution in (infinite) Taylor series

over the sampling intervalt ∈ [kT, (k + 1)T )

x(kT + t) = x(kT ) + tẋ(kT ) +
t2

2!
ẍ(kT ) + · · · +

tr

r!
x(r)(kT ) + · · · ,

where the higher order derivatives ofx can be obtained by repetitive differentiation of the

right hand side of (2.1.5)

x
(r)
i =

n
∑

j=1

∂f
(r−2)
i

∂xj

fj := f
(r−1)
i , (3.3.1)
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wherer > 1. As we are interested in the statex only at the sampling instantkT +T , then

we obtain fort = T

x((k + 1)T ) = x(kT ) +
∞
∑

r≥1

T r

r!
x(r)(kT ). (3.3.2)

Denote thei-th component ofx and vector valued functionf(x, u) with u(t) = uk by

xi andfuk,i, respectively. Note that the derivatives ofx can be expressed in terms of Lie

differential operator

Lfu
k

=
n
∑

i=1

fuk ,i(x)
∂

∂xi

,

associated with the vector fieldfuk
(x), as followx(r) = Lr

fuk

for r ≥ 1. Then the equation

(3.3.2) can be rewritten in the following form

x((k + 1)T ) = x(kT ) +

∞
∑

r≥1

T r

r!
Lr

fu
k

x(kT ). (3.3.3)

The exact discrete-time model (3.3.3) of a continuous-timesystem (2.1.5) is, in general, in

the form of the infinite series with respect to the sampling period T . In reality to compute

the model, one must confine oneself with finite number of termsin this series. In that

way we reach the notion of approximate discrete-time models. Computing approximate

discrete-time models corresponds to the truncation of the infinite series with respect to

the sampling periodT at the fixed orderτ , which defines the order of approximation of

the sampled system.

Two examples are given below to illustrate the Taylor seriesexpansion method.

Example 3.3.1Consider the system [14], which is depicted in Figure 3.4.

x1

um = 1

x2

Figure 3.4: Mechanical system. Unit mass with damper and spring
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Let x1 be the position of the cart that moves with velocityx2. We assume that the spring

force is described by a nonlinear functionφ(x1) of the position and that the damper force

is a nonlinear functionψ(x2) of the velocity. The system is then described by the follow-

ing equations

ẋ1 = x2

ẋ2 = −φ(x1) − ψ(x2) + u
. (3.3.4)

Next, using the formula (3.3.1), we find the 2-nd

ẍ1 = −φ(x1) − ψ(x2) + u

ẍ2 = −x2φ
′

(x1) + ψ
′

(x2)(φ(x1) + ψ(x2) − u)

and the 3-rd order derivatives of each state of the system

x
(3)
1 = −x2φ

′

(x1) + ψ
′

(x2)(φ(x1) + ψ(x2) − u)

x
(3)
2 = φ

′

(x1)
(

−u+ φ(x1) + ψ(x2) + x2ψ
′

(x2)
)

− x2
2φ

′′

(x1)+

+ ψ
′2(x2)(u− φ(x1) − ψ(x2)) − ψ

′′

(−u+ φ(x1) + ψ(x2))
2

.

Then, it follows from (3.3.2) that the 3-rd order discrete-time model of the continuous-

time system (3.3.4) is described by the following equations

x1((k + 1)T ) = x1(kT ) + Tx2(kT ) + T 2

2
(u(kT ) − φ(x1(kT )) − ψ(x2(kT )))+

+ T 3

6

(

−x2φ
′

(x1(kT )) + ψ
′

(x2(kT )
)

(φ(x1(kT )) + ψ(x2(kT ))−

− u(kT )))

x2((k + 1)T ) = x2(kT ) + T (u(kT ) − φ(x1(kT )) − ψ(x2(kT )))+

+ T 2

2

(

−x2φ
′

(x1(kT )) + ψ
′

(x2(kT ))(φ(x1(kT )) + ψ(x2(kT ))−

− u(kT ))
)

+ T 3

6

(

−ψ
′′

(x2(kT ))(−u(kT ) + φ(x1(kT ))+

+ ψ(x2(kT )))2 + ψ
′2(x2(kT ))(u(kT )− φ(x1(kT )) − ψ(x2(kT )))

− x2
2(kT )φ

′′

(x1(kT )) + φ
′

(x1(kT ))
(

−u(kT ) + φ(x1(kT ))

+ ψ(x2(kT )) + x2(kT )ψ
′

(x2(kT ))
))

Example 3.3.2Consider the system (3.2.2) from Example 3.2.1. Denote

f1 := u

f2 := x1

f3 := x2 + x2
1
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and using the formula (3.3.1) compute the 2-nd order derivatives

f
(1)
1 := ẍ1 = ∂f1

∂x1
f1 + ∂f1

∂x2
f2 + ∂f1

∂x3
f3 = 0

f
(1)
2 := ẍ2 = ∂f2

∂x1
f1 + ∂f2

∂x2
f2 + ∂f2

∂x3
f3 = u

f
(1)
3 := ẍ3 = ∂f3

∂x1
f1 + ∂f3

∂x2
f2 + ∂f3

∂x3
f3 = 2x1u+ x1

.

After that we compute analogously the 3-rd order derivatives

x
(3)
1 = 0

x
(3)
2 =

∂f
(1)
2

∂x1
f1 +

∂f
(1)
2

∂x2
f2 +

∂f
(1)
2

∂x3
f3 = 0

x
(3)
3 =

∂f
(1)
3

∂x1
f1 +

∂f
(1)
3

∂x2
f2 +

∂f
(1)
3

∂x3
f3 = 2u2 + u

.

It is obvious that the 4-th order derivatives of each state will be equal to zero. Then,

it follows from (3.3.2) that the exact discrete-time model is described by the following

equations

x1(kT + T ) = x1(kT ) + Tu(kT )

x2(kT + T ) = x2(kT ) + Tx1(kT ) + T 2

2
u(kT )

x3(kT + T ) = x3(kT ) + T (x2(kT ) + x2
1(kT ))+

+ T 2

2
(2x1(kT )u(kT ) + x1(kT )) + T 3

6
(2u2(kT ) + u(kT ))

.

One can easily check that the obtained here model is the same as in Example 3.2.1.

3.4 Finitely Discretizable Systems

There is a subclass of so called finitely discretizable nonlinear systems, which has been

introduced in [10]. For a finitely discretizable system a solution is completely determined

by a finite number of the state derivatives. In other words, for a finitely discretizable

system, for certain positive integerK, Lk
fx = 0 for all k > K. Note that the property of

being finitely discretizable is not invariant under the arbitrary change of local coordinates.

However, this property is invariant under a polynomial change of coordinates. In [10], a

sufficient condition is given for a polynomial system

ẋ(t) = X0(x(t)) +
m
∑

j=1

ujXj(x(t)) (3.4.1)

to be finitely discretizable. In order to characterize this subclass, we recall the definitions

of dilation and homogeneous degree.
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Definition 3.4.1 A dilation is a map: δt : R
+ ×R

n → R
n of the formδt(x) = (tr1x1, . . . ,

trnxn), where the integersri satisfy the inequality1 ≤ r1 ≤ r2 ≤ · · · ≤ rn.

Definition 3.4.2 A vector fieldZ(x) = (Z1(x), . . . , Zn(x))
T is said to be homogeneous

of degree−s with respect to a dilationδt, if

(Tδt(Z)) = ts(Z ◦ δt), (3.4.2)

where the components ofZ are the polynomial functions in variablesx1, . . . , xn andTδt

is the Jacobian matrix of the mapδt(x), i.e.

Tδt =

















tr1 0 · · · 0

0 tr2 · · · 0
...

...
. . .

...

0 0 · · · trn

















. (3.4.3)

A sufficient condition of finite discretization is formulated in the following theorem.

Theorem 3.4.1 If X0, . . . , Xm in (3.4.1) are polynomial vector fields, homogeneous of

degree−1, with respect to the dilationδt(x) = (tr1x1, . . . , t
rnxn), then system(3.4.1) is

finitely discretizable withrn being the order of the highest nonzero term in Taylor series

expansion.

Using Definition 3.4.2 and puttings = 1 in (3.4.2), the assumptions of Theorem 3.4.1 are

satisfied iff the system of equations

〈dxi, T δt(Xj)〉 = t〈dxi, Xj〉 ◦ δt (3.4.4)

for i = 1, . . . , n, j = 0, . . . , m is solvable with respect tor1, r2, . . . , rn.

An example is given below to illustrate the theory presentedabove.

Example 3.4.1Consider the chained system [30]:

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1

. (3.4.5)
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The vector fields associated with (3.4.5) areX1 = ∂
∂x1

+ x2
∂

∂x3
andX2 = ∂

∂x2
. In this

case, with respect to Definition 3.4.1 the dilation isδt(x1, x2, x3) = (tr1x1, t
r2x2, t

r3x3)

and tangent space is

Tδt =











tr1 0 0

0 tr2 0

0 0 tr3











. (3.4.6)

Then, the vector fieldsX1 andX2, influenced by tangent space (3.4.6), can be rewritten

asTδt(X1) = tr1 ∂
∂x1

+ tr3x2
∂

∂x3
andTδt(X2) = tr2 ∂

∂x2
. Next, we find scalar products of

〈dxi, Xj〉 and〈dxi, T δt(Xj)〉, wherei = 1, 2, 3 andj = 1, 2.


















〈dx1, X1〉 = 1

〈dx2, X1〉 = 0

〈dx3, X1〉 = x2

,



















〈dx1, X2〉 = 0

〈dx2, X2〉 = 1

〈dx3, X2〉 = 0

,



















〈dx1, T δt(X1)〉 = tr1

〈dx2, T δt(X1)〉 = 0

〈dx3, T δt(X1)〉 = tr3x2

,



















〈dx1, T δt(X2)〉 = 0

〈dx2, T δt(X2)〉 = tr2

〈dx3, T δt(X2)〉 = 0

.

Now, using formula (3.4.4), we try to calculate the values ofr1, r3 andr3.

From〈dx1, T δt(X1)〉 = t〈dx1, X1〉 ◦ δt it follows thattr1 = t and consequentlyr1 = 1.

From〈dx2, T δt(X2)〉 = t〈dx2, X2〉 ◦ δt it follows thattr2 = t and consequentlyr2 = 1.

From 〈dx3, T δt(X1)〉 = t〈dx3, X1〉 ◦ δt it follows that tr3x2 = tx2t
r2 and consequently

r3 = 2.

Then, the dilation can be rewritten asδt(x1, x2, x3) = (tx1, tx2, t
2x3).

Since it was possible to calculate values ofr1, r2 andr3, assumptions of Theorem 3.4.1 are

satisfied, and as a result the system (3.4.5) is finitely discretizable in original coordinates

at most the order3.

3.5 Nilpotent Systems

The property of finite discretizability is not invariant under the arbitrary coordinate trans-

formation. However, if the vector fieldsX0, . . . , Xm in (3.4.1) generate the nilpotent Lie

algebraL(X0, . . . , Xm), then locally there exist the state coordinates in which (3.4.1) is
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finitely discretizable. The Lie algebraL(X0, . . . , Xm) is the smallest linear subspace that

contains the vector fieldsX0, . . . , Xm and is closed under the Lie bracket operation

[Xα, Xβ](x) :=
n
∑

i=1

n
∑

j=1

(

∂Xα,i

∂xj

Xβ,j −
∂Xβ,i

∂xj

Xα,j

)

∂

∂xi

.

The Lie algebraL(X0, . . . , Xm) is said to be nilpotent if there exists an integerk > 0 such

that all Lie products of length greater thank vanish, i.e.[X0, [X1, . . . , [Xp, Xp+1]]] = 0

for all p > k.

Example 3.5.1Consider the following system [1]

ẋ1 = u1

ẋ2 = u1 tanx3

ẋ3 = u2 cos2 x3

. (3.5.1)

The vector fields associated with (3.5.1) areX1 = ∂
∂x1

+ tan x3
∂

∂x2
andX2 = cos2 x3

∂
∂x3

.

Next, we want to check whether the Lie algebraL(X1, X2) is nilpotent or not. Then, the

iterated Lie brackets should be calculated.

[X1, X2] =











0 0 0

0 0 0

0 0 −2 cosx3 sin x3





















1

tan x3

0











−

−











0 0 0

0 0 1
cos2 x3

0 0 0





















0

0

cos2 x3











= −
∂

∂x2

,

[X1, [X1, X2]] =











0 0 0

0 0 0

0 0 0





















1

tan x3

0











−











0 0 0

0 0 1
cos2 x3

0 0 0





















0

−1

0











= 0,

[X2, [X1, X2]] =











0 0 0

0 0 0

0 0 0





















0

0

cos2 x3











−

−











0 0 0

0 0 0

0 0 −2 cosx3 sin x3





















0

−1

0











= 0.
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As we can see the following Lie brackets[X1, [X1, X2]] = 0 and[X2, [X1, X2]] = 0. It

means that the system (3.5.1) is nilpotent, and consequently there exist the state coordi-

nates in which (3.5.1) is finitely discretizable.

Notice that the verifying whether the original system is nilpotent or not is the first step.

After that one should to calculate new state coordinates in which the original system

obtains the finitely discretizable form. This is a difficult task. Then, we have developed

algorithm, which computes new state coordinates. However,at this time this algorithm is

at a stage of completion and consequently will not be presented in this thesis. Therefore,

this place in Fig. 3.5 is denoted by the dotted arrow.

The general scheme of constructing a discrete-time model from a continuous-time system

(2.1.5) is shown in Fig. 3.5.
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Figure 3.5: The general scheme of constructing a discrete-time model
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Chapter 4

Implementation in CAS Mathematica

The subject of this chapter is to discuss in detail implementation aspects of different

functions. The first functionDiscretization allows one to find the exact or ap-

proximate discrete-time models of continuous-time systemusing two different methods.

After that one can plot continuous-time system and discrete-time model by using func-

tion DiscretizationPlot. Besides that,Dilation andHomogeneousDegree

were created for verifying whether the original continuous-time system is finitely dis-

cretizable in original state coordinates or not. Finally, the functionNilpotency checks

if the original system is nilpotent or not. All those functions were implemented in the

form defined by the CASMathematicaand integrated into the packageNLControl .

The chapter is organized as follows. Four sections of the chapter describe functions listed

above. Each section is divided into two subsections. The first of them describes how

function works and the second one how to use it. All sections are illustrated by examples.

The last section presents some additional examples.

4.1 A Short Guidance on the NLControl package

This section briefly provides necessary information on theNLControl package and con-

siders some useful functions. We introduce notions only of those basic functions, which

are used throughout this chapter.

In order to make possible using of any function from the package, we should to load it. It
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is easily can be done by the following command

In[1]:= «NLControl‘Master‘

We suppose that in the examples used in this chapter, theNLControl package is already

loaded.

Consider the systems (2.1.5) and (2.1.6). If one wants to perform computations with one

of such systems, then it should be entered in the form determined byMathematicaand

NLControl package as shown below. Such form can be obtained using the following

function

StateSpace[f, Xt, Ut, t, Type],

wheref is a list of the state functions,Xt andUt define lists of the state and input

variables, respectively, andt is a time argument. Finally, the argumentType may have

one of the following two values.TimeDerivatives stands for continuous-time case

andShift for discrete-time case.

Another important function isBookForm[], which displays different objects produced

by the package in a standard form pleasant to read. One of the optional arguments of this

functions isTimeArgument. Its value can beTrue, False or Subscripted. If the

value ofTimeArgument is True, then the time argumentt will be printed for each

variable in brackets[]. If the value isFalse, then the time argument will be left out to

make the output result visually as short as possible.Subscriptedmeans thatt will be

printed as a subscript. The default value ofTimeArgument is True.

The application of the functions presented above is shown bythe following example.

Example 4.1.1Consider the continuous-time system

ẋ1 = u1x
2
2

ẋ2 = x3 + u2

ẋ3 = x1u2

. (4.1.1)

In order to enter and display the system (4.1.1) in the standard form, we should use the

following commands
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In[2]:= f = {u1[t]*x2[t]
2,x3[t]+u2[t],x1[t]*u2[t]};

Xt = {x1[t],x2[t],x3[t]};

Ut = {u1[t],u2[t]};

contSys = StateSpace[f,Xt,Ut,t,TimeDerivative];

BookForm[contSys]

Notice that in the fifth rowMathematicacreates the objectcontSys. One of the further

possibilities on using it consists in calling the functionBookForm[] as shown above.

Then, the output result is

x1[t] = u1[t]x2[t]
2

Out[6]= x2[t] = x3[t]+u2[t]

x3[t] = x1[t]u2[t]

Of course, there are much more useful functions in theNLControl package, but here we

have described only those that are most oftenly used in the examples of this thesis.

4.2 Discretization

4.2.1 Description of the function

The functionDiscretization implements two discretization methods of continuous-

time system (2.1.5), described in Sections 3.2 and 3.3. Its returning value is a discrete-

time model of the form (2.1.6). The function has one necessary and three optional argu-

ments. The block-diagram of the functionDiscretization is presented in Fig. 4.1.

When called, it performs the following steps:

• Step 1. The functionDiscretization initializes the basic variables and on the

basis of this information executes the following steps.

• Step 2. It defines whetherTaylor or Triangular discretization method was

chosen.
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• Step 3a. If the first method was selected, then firstly function checks whether the

original system is finitely discretizable or not, calling functionDilation. After

that on the basis of obtained information it calculates the exact or approximate

discrete-time model using equations (3.3.1) and (3.3.2).

• Step 3b. If someone decided to chose the second method, then the exact discrete-

time model will be calculated using theory presented in Section 3.2.

• Step 4. The functionDiscretization returns the result as follows
{

p
∑

r≥0

T r

r!
x

(r)
1 (kT ), . . . ,

p
∑

r≥0

T r

r!
x(r)

n (kT )

}

,

wherep is some positive integer number, inTaylor method case, and

{x1(kT ) + F1(u(kT ), T ), . . . , xn(kT ) + Fn(x1(kT ), . . . , xn−1(kT ), u(kT ), T )}

in Triangular method case.

4.2.2 Application

The functionDiscretization has one necessary and three optional arguments:

Discretization[contSystem, PrintInfo, Method,

ApproximationOrder].

ThecontSystem (continuous-time system) is a necessary argument of the function and

has to be given by the state equations in the form, determinedby NLControl package.

The optional argumentPrintInfo is a boolean variable having one of the valuesTrue

or False. If its value isTrue, then the result of the function, besides other, will be

displayed in traditional form (it can be useful, because themain returned result is in the

form, determined byMathematica, and for some people it can be not absolutely clear).

The default value ofPrintInfo is True. The argumentMethod defines one of the

following discretization methodsTaylor or Triangular. The first of them stands

to Taylor series expansion method and the second to direct Integration method. The de-

fault value isTaylor. The last optional argumentApproximationOrder defines
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Figure 4.1: The block-diagram of the functionDiscretization

29



how many times the right hand side of a system should be differentiated, whenTaylor

method is used. Its default value isr, which means that if the user did not assign an

appropriate numeric value to this argument, then the function tries to compute the exact

discrete-time model.

The practical application of the functionDiscretization is demonstrated by the fol-

lowing examples.

Example 4.2.1Consider the system [24], which describes the dynamics of fish population

ẋ = Kx(M − x) − u. (4.2.1)

Herex is a measure of the size of the fisheries resource andu denotes the harvesting rate.

In order to display the system (4.2.1) in the standard form defined byMathematica, it has

to be entered as follows

In[2]:= f = {K*x[t]*(M-x[t])-u[t]};

Xt = {x[t]};

Ut = {u[t]};

contSys = StateSpace[f,Xt,Ut,t,TimeDerivative];

BookForm[contSys]

Then, the output is

Out[6]= x’ = -u+K(M-x)x

Next, we call the functionDiscretization, usingTaylor method, with respect to

the second order discrete-time model.

In[7]:= Discretization[contSys,PrintInfo->True,Method->Taylor,

ApproximationOrder->2]

x(k+1) = x(k)+-u(k)+K M x(k)-K x(k)2 +
1

2
(-K M u(k)+K2 M2x(k)+2K u(k) x(k)-3K2M x(k)2 +2K2M x(k)3)

Out[7]= {x[k]+-u[k]+K M x[k]-K x[k]2 +
1

2
(-K M u[k]+K2 M2x[k]+

+2K u[k] x[k]-3K2M x[k]2 +2K2M x[k]3)}

30



Then, the second order discrete-time model is described by the previous equation.

The example below is the kinematic model of the mobile robot.

Example 4.2.2Consider the following system [9]

ẋ1 = u1 cos x3

ẋ2 = u1 sin x3

ẋ3 = u2

, (4.2.2)

wherex1, x2 are the vehicle coordinates, andx3 is the orientation angle of the robot. The

input signalu1 represents the linear velocity of the robot andu2 its angular velocity.

Next, we enter the system (4.2.2) as follows.

In[2]:= f = {u1[t]*Cos[x3[t]],u1[t]*Sin[x3[t]],u2[t]};

Xt = {x1[t],x2[t],x3[t]};

Ut = {u1[t],u2[t]};

contSys = StateSpace[f,Xt,Ut,t,TimeDerivative];

After that, we call the functionDiscretization, usingTaylormethod, with respect

to the second order discrete-time model.

In[6]:= Discretization[contSys,Method->Taylor,

ApproximationOrder->2]

Out[6]= {x1[kT]+TCos[x3[kT]]u1[kT]-
T2

2 Sin[x3[kT]]u1[kT]u2[kT],

x2[kT]+TSin[x3[kT]]u1[kT]+
T2

2 Cos[x3[kT]]u1[kT]u2[kT],

x3[kT]+Tu2[kT]}

Then, the second order discrete-time model of the continuous-time system (4.2.2) is de-

scribed by the previous set of equations.

As we can see, the equations (4.2.2) are not in the form (3.2.1), but after permuting the

state and control coordinates as followsx̃1 = x3, x̃2 = x1, x̃3 = x2, ũ1 = u2 andũ2 = u1,

the system accommodates into the form of (3.2.1), except that the functions in (3.2.1) are
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not polynomials.

x̃
′

1 = ũ1

x̃
′

2 = ũ2 cos x̃1

x̃
′

3 = ũ2 sin x̃1

(4.2.3)

In spite of trigonometric functions in (4.2.3), we can stillapply the direct integration

method.

In[7]:= f2 = {ũ1[t],ũ2[t]*Cos[x̃1[t]],ũ2[t]*Sin[x̃1[t]]};

Xt2 = {x̃1[t],x̃2[t],x̃3[t]};

Ut2 = {ũ1[t],ũ2[t]};

contSys2 = StateSpace[f2,Xt2,Ut2,t,TimeDerivative];

Next, we call the functionDiscretization, usingTriangular method.

In[11]:= discrSys2 = Discretization[contSys2,Method->Triangular];

BookForm[discrSys2,{x̃1[k*T],x̃2[k*T],x̃3[k*T],

{ũ1[k*T],ũ2[k*T]},k]

x̃1[T+kT] = x̃1[kT]+T ũ1[kT]

Out[12]= x̃2[T+kT] = x̃2[kT]+
2Cos

[

1
2T ũ1[kT]

(

2x̃1[kT]
T ũ1[kT]

+1
)]

Sin[ 12T ũ1[kT]]ũ2[kT]
ũ1[kT]

x̃3[T+kT] = x̃3[kT]+
2Sin

[

1
2T ũ1[kT]

(

2x̃1[kT]
T ũ1[kT]

+1
)]

Sin[ 12T ũ1[kT]]ũ2[kT]
ũ1[kT]

After permuting back the original state and control coordinates, we obtain the exact

discrete-time model of the continuous-time system (4.2.2).

4.3 DiscretizationPlot

4.3.1 Description of the function

The functionDiscretizationPlot was created, since finding out of the quality of

obtained discrete-time model is extremely important task for its further use. Obviously,

it is more easier to control a model with more simple structure, but at the same time

one should not forget about the accuracy of obtained model. Therefore, using visual
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information about its behavior during some period of time, one can change the model

and try to find an equilibrium point between quality and complexity. The function returns

figure or figures with drawn changes of states of continuous-time system and discrete-

time model during some certain period of time. It has six necessary and one optional

arguments. The block-diagram of the functionDiscretizationPlot is depicted in

Figure 4.2. When called, it performs the following steps:

• Step 1. The functionDiscretizationPlot initializes the basic variables and

on the basis of this information executes the following steps.

• Step 2. The function uses numerical methods (Mathematicaautomatically decides

which method or their combination is better to use, relatively to the form of the

input system) in order to find the solution of the continuous-time system and collect

obtained data.

• Step 3. The function collects data from the discrete-time model running time inter-

val from tmin up totmax, with respect to the sampling timeT .

• Step 4. On the basis of collected dataDiscretizationPlot plots all states

of the continuous- and discrete-time systems in one figure orin pairs in different

figures.

4.3.2 Application

DiscretizationPlot has six necessary and one optional arguments:

DiscretizationPlot[contSystem,discrSystem,

initialConditions,controlSignal,timeInterval,

samplingTime,AllInOne].

The contSystem (continuous-time system) anddiscrSystem (discrete-time sys-

tem) are necessary arguments of the function and have to be given by the state equations.

In order to get started for the third and the fourth argumentshave to be assigned appro-

priate initial conditions and values of all states of the system and of all control signals,
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ẋ = f(x, u),

x((k + 1)T ) = f(x(kT ), u(kT )),

u, x0 and t ∈ [tmin, tmax].

Data collection :

Numerical solution

Data collection :

{x(tmin), x((tmin + 1)T ), . . . , x(tmax)}

All

plots in one

figure

True False

Continuous Discrete

Figure 4.2: The block-diagram of the functionDiscretizationPlot

34



respectively. The fifth argument is a simulation interval ofthe form{t, tmin, tmax}. The

last necessary argumentsamplingTime defines the value of the sampling timeT . The

optional argument is responsible for showing system statestogether in one figure or in

pairs in different figures (by default its value is equal toTrue). Sometimes it is useful to

analyze each state of a system separately.

The action of the functionDiscretizationPlot is demonstrated by applying it to

the following example.

Example 4.3.1Consider the system from Example 4.2.2. In order to verify the quality of

obtained discrete-time model, we should enter the continuous-time system

In[2]:= f = {u1[t]*Cos[x3[t]],u1[t]*Sin[x3[t]],u2[t]};

Xt = {x1[t],x2[t],x3[t]};

Ut = {u1[t],u2[t]};

contSys = StateSpace[f,Xt,Ut,t,TimeDerivative];

and after that the obtained discrete-time model.

In[6]:= f2 = {x1[k*T]-
T2

2 Sin[x3[k*T]]*u1[k*T]*u2[k*T]+

T*Cos[x3[k*T]]*u1[k*T],x2[k*T]+

T2

2 Cos[x3[k*T]]*u1[k*T]*u2[k*T]+T*Sin[x3[k*T]]*u1[k*T],

x3[kT]+Tu2[kT]};

Xk = {x1[k*T],x2[k*T],x3[k*T]};

Uk = {u1[k*T],u2[k*T]};

discrSys = StateSpace[f2,Xk,Uk,k,Shift];

Next, we call the functionDiscretizationPlotwith the following arguments.

In[10]:= DiscretizationPlot[contSys,discrSys,{0,1,0},{3,1},

{t,0,10},0.3]

35



Out[10]=

As we can see, the precision of obtained discrete-time modelis good enough.

4.4 Dilation

4.4.1 Description of the function

The functionDilation finds a dilation of the given continuous-time system. It imple-

ments the condition of the Definition 3.4.1 and the equation (3.4.4). The calculation of

this function is an important thing in case if you already do not know a dilation and want

to check whether the original system is finitely discretizable or not, otherwise you can

use the functionHomogeneousDegree, described in the next subsection. The return

value of the current function is a list of the system states. Each of them is multiplied by a

time instance in an appropriate power. The function has one necessary and one optional

arguments. When called, it performs the following steps:

• Step 1.The functionDilation initializes the basic variables and on the basis of

this information executes the following steps.

• Step 2. It calculates the following scalar products〈dxi, Xj〉 and 〈dxi, T δt(Xj)〉,

wherei = 1, . . . , n andj = 0, . . . , m.

• Step 3.Using equation (3.4.4), the function implements the condition of the Defi-

nition 3.4.1 to compute integer values(r1, r2, . . . , rn).

• Step 4.Dilation returns the result in the following form

{tr1x1, t
r2x2, . . . , t

rnxn}.
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4.4.2 Application

The functionDilation has one necessary and one optional arguments:

Dilation[contSystem, PrintInfo].

ThecontSystem (continuous-time system) is a necessary argument of the function and

has to be given by the state equations. The optional argumentPrintInfo is a boolean

variable with one of the valuesTrue orFalse (for more information see Section 4.2.2).

The practical application of this function is shown by the following example of the kine-

matic model of the plate and ball system.

Example 4.4.1Consider the system [2]

ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2 − x2u1

ẋ4 = x3u1

ẋ5 = x3u2

. (4.4.1)

After, the system (4.4.1) has been entered

In[2]:= f = {u1[t],u2[t],x1[t]*u2[t]-x2[t]*u1[t],x3[t]*u1[t],

x3[t]*u2[t]};

Xt = {x1[t],x2[t],x3[t],x4[t],x5[t]};

Ut = {u1[t],u2[t]};

contSys = StateSpace[f,Xt,Ut,t,TimeDerivative];

the functionDilation can be called.

In[6]:= Dilation[contSys,PrintInfo->True]

δt(x1,x2,x3,x4,x5) = (tx1,tx2,t
2x3,t

3x4,t
3x5)

Out[6]= {tx1,tx2,t
2x3,t

3x4,t
3x5}

Note that it was possible to solve the system (3.4.4) for allri, wherei = 1, . . . , 5, and

therefore the system (4.4.1) is finitely discretizable in original coordinates.
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4.5 HomogeneousDegree

4.5.1 Description of the function

The functionHomogeneousDegree calculates homogeneous degrees of the vector

fields associated with a continuous-time system with respect to the dilation, according

to the Definition 3.4.2. Its calculation is an important stepin case if one decided to verify

whether the sufficient condition of the Theorem 3.4.1 is satisfied and the considered sys-

tem is finitely discretizable or not. Of course, for this purpose one can use the function

Dilation, butHomogeneousDegree is preferable, if the dilation of the considered

system is already known. The function has two necessary and one optional arguments.

When called, it performs the following steps:

• Step 1.HomogeneousDegree initializes the basic variables and on the basis of

this information executes the following steps.

• Step 2. The function constructs vector fields of the system and controls whether

they are polynomial or not.

• Step 3.It calculates the values ofsj with respect to the Definition 3.4.2.

• Step 4.The functionHomogeneousDegree returns the result as a set of homo-

geneous degrees.

4.5.2 Application

HomogeneousDegree has two necessary and one optional arguments:

HomogeneousDegree[contSystem, dilation, PrintInfo].

ThecontSystem is the necessary argument, which defines the continuous-time system

of interest given by the state equations. The second argument dilation is some already

known dilation. The optional argumentPrintInfo is a boolean variable with one of

the valuesTrue or False. If its value isTrue, then the function returns, besides other,

constructed vector fields and the result will be given in the traditional form.
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The action of the functionHomogeneousDegree is demonstrated by applying it to the

following example.

Example 4.5.1Consider the system (3.4.5) from Example 3.4.1 and try to findhomoge-

neous degrees using the functionHomogeneousDegree. For this purpose we have to

enter the system as follows.

In[2]:= f = {u1[t],u2[t],x2[t]*u1[t]};

Xt = {x1[t],x2[t],x3[t]};

Ut = {u1[t],u2[t]};

contSys = StateSpace[f,Xt,Ut,t,TimeDerivative];

After that, we call the functionHomogeneousDegree with the following arguments.

Although the dilation was obtained, using assumption that homogeneous degrees already

equal−1, this example is considered as an illustration of the possibilities of the function.

In[6]:= HomogeneousDegree[contSys,{tx1[t],tx2[t],t
2x3[t]},

PrintInfo->True]

Relatively to the dilation δt(x1,x2,x3) = (tx1,tx2,t
2x3),

vector fields: X1 =
∂

∂x1
+

∂

∂x3
x2,X2 =

∂

∂x2
are homogeneous of

degrees -s1 = -1,-s2 = -1, respectively.

Out[6]= {-1,-1}

As we can see the found values all equal to−1. Then, according to Theorem 3.4.1, it

means that the original system is finitely discretizable in original coordinates. This result

is identical to obtained in Example 3.4.1.

4.6 Nilpotency

4.6.1 Description of the function

The functionNilpotency checks whether the original system is nilpotent or not. This

function was programmed on the basis of presented in Section3.5 theory. Its calculation
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is an important thing in case if you want to verify whether theoriginal system is nilpotent

and as a result is finitely discretizable in some local state coordinates or not. The function

returnsTrue or False. Nilpotency has one necessary argument. When called, it

performs the following steps:

• Step 1.The functionNilpotency initializes the basic variables and on the basis

of this information executes the following steps.

• Step 2.It calculates the iterated Lie brackets until they all become equal to zero or

up to the order of the system.

• Step 3.Nilpotency returnsTrue in case if the system is nilpotent andFalse

otherwise.

4.6.2 Application

The functionNilpotency has one necessary argument:

Nilpotency[contSystem].

It requires the argumentcontSystem (continuous-time system) to be given by the state

equations.

The practical application of this function is shown by the following example.

Example 4.6.1Consider the system from Example 4.2.2. In order to verify whether the

original system is nilpotent or not we should enter the system as follows.

In[2]:= f = {u1[t]*Cos[x3[t]],u1[t]*Sin[x3[t]],u2[t]};

Xt = {x1[t],x2[t],x3[t]};

Ut = {u1[t],u2[t]};

contSys = StateSpace[f,Xt,Ut,t,TimeDerivative];

After that, we call the functionNilpotency.

In[6]:= Nilpotency[contSys]

Out[6]= False
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Note that during computation process some of Lie brackets donot become equal to zero

and as a result the system is not nilpotent. It means that locally there do not exist the state

coordinates in which the system (4.4.1) is finitely discretizable.

4.7 Program examples

The purpose of this section is an explanation of additional possibilities of presented above

functions by means of examples.

The following simple example illustrates the joint work of almost all programmed func-

tions.

Example 4.7.1Consider the system [10]

ẋ1 = u

ẋ2 = 1
2
x2x

2
1

. (4.7.1)

First of all we check whether the original system is finitely discretizable or not. Then, the

system (4.7.1) should be entered as follows.

In[2]:= f = {u[t]],
1

2
x1[t]

2x2[t]};

Xt = {x1[t],x2[t]};

Ut = {u[t]};

contSys = StateSpace[f,Xt,Ut,t,TimeDerivative];

After that, we call the functionDilation.

In[6]:= Dilation[contSys]

System is not finitely discretizable in the original

coordinates

Out[6]= {}

Note that it was not possible to solve the system (3.4.4) withrespect to the variablesr1, r2

and therefore the system (4.7.1) is not finitely discretizable in original coordinates. Then,

we call the functionNilpotency.
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In[7]:= Nilpotency[contSys]

Out[7]= True

It means that the system (4.7.1) is nilpotent, and consequently locally there exist the state

coordinates in which it is finitely discretizable. Next we try to calculate those coordinates,

calling the functionTransformationToFDF.

In[8]:= transfSys=TransformationToFDF[contSys,{z1[t],z2[t]}];

BookForm[transfSys]

Out[9]=

z’1[t] = u[t]

z’2[t] =
1

2
z1[t]

2

z1[t] = x1[t]

z2[t] = Log[x2[t]]

The first two rows are equations of the transformed system andlast two rows represent the

state coordinate transformation. Now one can see that this new system is in the form of

(3.2.1) and finitely discretizable. Then, using the function Discretization the exact

discrete-time model can be obtained.

In[10]:= dout=Discretization[transfSys[[1]],Method->Triangular];

BookForm[DStateSpace[dout,{z1[k*T],z2[k*T]},{u[k*T]},k]]

Out[11]=
z1[T+kT] = z1[kT]+Tu[kT]

z2[T+kT] = z2[kT]+
1

2
Tz1[kT]

2 +
1

2
T2u[kT]z1[kT]+

1

6
T3u[kT]2

Example 4.7.2Consider a single pendulum [4]. Let its mass bem and let the moment

of inertia with respect to the pivot point beJ . Furthermore letl be the distance from the

pivot to the center of mass. The angle between the vertical and the pendulum isθ, whereθ

is positive in the clockwise direction. The acceleration ofgravity isg and the acceleration

of the pivot isu. The accelerationu is positive if it is in the direction of the positive

x-axis. The equation of motion for the pendulum is

Jθ̈ −mgl sin θ +mul cos θ = 0. (4.7.2)

Consider the equation of motion for the inverted pendulum. In this case, after substituting

θ = 180◦ − β, (4.7.2) can be rewritten as follows

−Jβ̈ −mgl sin β −mul cosβ = 0. (4.7.3)
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Let x1 = β, then the state-space representation of the (4.7.3) is

ẋ1 = x2

ẋ2 = −
mgl

J
sin x1 −

ml

J
u cosx1

. (4.7.4)

Next, we can find the discrete-time model of the (4.7.4) usingfunctions from the previous

sections. Then, we enter the system of state equations.

In[2]:= f = {x2[t],-
m*g*l
J Sin[x1[t]]-

m*l
J u[t]Cos[x1[t]]};

Xt = {x1[t],x2[t]};

Ut = {u[t]};

contSys = StateSpace[f,Xt,Ut,t,TimeDerivative];

It is obvious that the system (4.7.4) is not finitely discretizable and there is no possibility to

find the exact discrete-time model. Therefore, we call the functionDiscretization

usingTaylor method, with respect to the second order discrete-time model.

In[6]:= Discretization[contSys,Method->Taylor,

ApproximationOrder->2]

Out[6]= {x1[kT]+Tx2[kT]+
1
2T

2
(

- glmSin[x1[t]]
J - lmCos[x1[t]]u[kT]

J

)

,

x2[kT]+T
(

- glmSin[x1[t]]
J - lmCos[x1[t]]u[kT]

J

)

+

1
2T

2
(

- glmCos[x1[t]]x2[t]
J + lmSin[x1[t]]u[kT]x2[t]

J

)

}

Therefore, the discrete-time model is described by the previous equations. Next, we enter1

the obtained model.

In[7]:= f2 = %;

Xk = {x1[k*T],x2[k*T]};

Uk = {u[k*T]};

discrSys = StateSpace[f2,Xk,Uk,k,Shift];

After that we initialize acceleration of gravity (m/s2), mass (kg), length of the pendulum

(m) and moment of inertia (N ∗m ∗ s2) with the following values

1The sign% corresponds to the previous output in theMathematicaprogramming environment.
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In[11]:= g = 9.8066;

m = 0.086184;

l = 0.113;

J = 0.0013011;

In order to verify the accuracy of obtained model, the functionDiscretizationPlot

should be called.

In[15]:= DiscretizationPlot[contSys,discrSys,{0.15,0.1},{1},{t,0,5},

0.01,AllInOne->False]

Out[15]= { , }

As we can see from presented above figures, the precision of obtained discrete-time model

is good enough and one can use it for the further research or implementation.
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Chapter 5

Neural Networks based ANARX

Structure for Control of Nonlinear

SISO and MIMO Systems

Discrete-time models of nonlinear systems were consideredin the previous chapters. In

some cases such classical models are not linearizable by dynamic feedback [39]. In order

to avoid this obstacle, Artificial Neural Networks can be used to identify a discrete-time

model in the form, which is always linearizable.

This chapter briefly describes the identification of nonlinear systems by ANARX models

and ANARX models based control. They have several importantadvantages over clas-

sical NARX models. ANARX is a subclass of NARX models and has all time instances

separated. Restrictions imposed by this subclass guarantee linearizability by dynamic

output feedback as well as state-space representability ofthe identified model. These ad-

vantages are especially important for control applications. That is why this type of the

model is a reasonable choice for control of a wide class of nonlinear systems.

The chapter is organized as follows. Section 5.1 contains a brief summary of the theory

connected to ANARX structure and establishes the differences from NARX structure.

After that in Section 5.2 different control techniques and simulation results of nonlinear

plant identification and control using ANARX structure, arepresented. Each example is

chosen to emphasize a specific point of the theory described above.
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5.1 NN-based ANARX Structure

Discrete-time Nonlinear AutoRegressive eXogenous (NARX)models are represented by

the high order difference equation

y(k) = f(y(k − 1), . . . , y(k − n), u(k − 1), . . . , u(k − n)).

This model can be easily obtained by using a multilayered perceptron. On the one side

such structure is capable of modeling a wide class of nonlinear systems with a high pre-

cision, but on the other side, from the control system point of view, it has several serious

drawbacks. First of them is that in general this structure can not be represented in the

classical state-space form. Besides that, there is no possibility to separate different time

steps. And finally, this structure is not always linearizable by the dynamic output feed-

back. Then, due to those facts Additive NARX or shortly ANARXstructure was proposed

to bridge the gap.

The idea of separating time-instances was firstly proposed in [12]. ANARX model shown

in [13], [20] and [21] is a subclass of well known NARX models and has all time instances

separated

y(k) = f1(y(k − 1), u(k − 1)) + fn(y(k − n), u(k − n)), (5.1.1)

wheref1(·), . . . , fn(·) are nonlinear functions,y(k) = (y1(k), . . . , ym(k))T ∈ R
m is a

vector of system outputs andu(k) = (u1(k), . . . , ur(k))
T ∈ R

r is a vector of system

inputs.

Comparing with NARX structure, ANARX model can always be rewritten in the classical

state-space form as follows

x1(k + 1) = x2(k) + f1(x1(k), u(k))

x2(k + 1) = x3(k) + f2(x1(k), u(k))
...

xn−1(k + 1) = xn(k) + fn−1(x1(k), u(k))

xn(k + 1) = fn(x1(k), u(k))

y(k) = x1(k)

.

State-space representation is an important property of thecontrol system, which provides

a convenient and compact way for its further modeling and analyzing.
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Another advantage of ANARX model (5.1.1) is that it can always be linearized by the

following dynamic output feedback [39]

u(k) = F−1(y(k), η1(k)),

where

F (y(k), u(k)) = η1(k), (5.1.2)

and the dynamics of the feedback linearization are described by the following equations

η1(k + 1) = η2(k) − f2(y(k), u(k))

η2(k + 1) = η3(k) − f3(y(k), u(k))
...

ηn−2(k + 1) = ηn−1(k) − fn−1(y(k), u(k))

ηn−1(k + 1) = v(k) − fn(y(k), u(k))

. (5.1.3)

Herev(k) is a vector of desired outputs of the system (reference signals).

ANARX structure is very well suited for the representation by using a neural network of

the specific structure proposed in [13]. The structure of such neural network is shown in

Fig. 5.1.

It can be seen from the figure that the hidden layer consists ofn sublayers corresponding

to then-th order of the model. This model is called Neural Networks based ANARX or

shortly NN-based ANARX and can be expressed by the followingdifference equation

y(k) =
n
∑

i=1

Ciφi

(

Wi · [y(k − i), u(k − i)]T
)

, (5.1.4)

whereφi(·) is an activation function ofi-th sublayer neurons,Ci is am× li dimensional

matrix of i-th sublayer output synaptic weights andWi is a li × (r + m) dimensional

matrix of i-th sublayer input synaptic weights. Hereli is the number of hidden neurons in

i-th sublayer.

If ANARX model was obtained in the form of neural network (5.1.4), then equations

(5.1.2) and (5.1.3) can be rewritten by using parameters of the neural network [21] as

follows

F := C1φ1

(

W1 · [y(k), u(k)]
T
)

= η1(k) (5.1.5)
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Figure 5.1: Structure of neural network representing MIMO NN-based ANARX model

and

η1(k + 1) = η2(k) − C2φ2

(

W2 · [y(k), u(k)]
T
)

η2(k + 1) = η3(k) − C3φ3

(

W3 · [y(k), u(k)]
T
)

...

ηn−2(k + 1) = ηn−1(k) − Cn−1φn−1

(

Wn−1 · [y(k), u(k)]
T
)

ηn−1(k + 1) = v(k) − Cnφn

(

Wn · [y(k), u(k)]T
)

. (5.1.6)

The structure of the corresponding control system is depicted in Fig. 5.2.

The theory presented above shows that it is attractive to useNN-based ANARX structure

in different real life or academical applications. However, in this case there is a one serious

obstacle, namely calculation of the control signalsu(k) from (5.1.5). It means that inverse

functionF−1(y(k), η1(k)) of the first sublayer (5.1.5) has to be found, in order to make

possible using of dynamic output feedback linearization algorithm (5.1.5) and (5.1.6). A

big research was made in this area during last three years anddifferent solutions were

offered. Each of proposed techniques has a number of advantages and disadvantages and

can be applied in different situations for solving tasks of different complexity.
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Figure 5.2: Structure of the control system

5.2 Calculation of the Control Signal in Neural Networks

based ANARX Models

A number of advantages of the NN-based ANARX structure and reasons why it is more

preferable as a control technique were considered in the previous section. However, it

was also mentioned that such structure has a one serious drawback, namely calculation

of the control signal. Therefore, this section discusses the basic results and solutions of

this problem achieved by the author and/or his colleagues during last years. All methods

presented below are arranged in the order of their origin.

5.2.1 Newton’s method

Newton’s method, also called Newton-Raphson method, can beused for solving the equa-

tion or system of equations (5.1.5) with respect to the variable(s)u(k) by the methods of

the calculus. The practical application of this approach was shown in [37], [38] and [6],

where it was applied mainly to SISO systems. Such disproportion can be explained by the

fact that numerical solution of (5.1.5), in case of MIMO systems, becomes an extremely

difficult task, since the number of variables and equations increase. Besides that practice

has shown that the convergence speed of a such classical numerical algorithm may be one

of the main obstacles for the calculation of the control signals.
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Example 5.2.1This example gives a brief overview of the results, announced in [6]. For

the convenience of the reader we omit some additional details and repeat only the relevant

material, thus if someone wants more deeply to familiarize with the control algorithm,

then all necessary information can be found in [6].

Nonlinearity and instability make the backing up control ofa truck-trailer a difficult task.

Existing solutions of a truck-trailer backing up problem are mainly based on employing

neural networks [32], fuzzy [40], [43], or neuro-fuzzy [17], [19] controllers and practi-

cally nothing is available for more classical control methods. On the one side such dis-

proportion can be explained by the fact that fuzzy and neuralcontrollers very well suite

for such tasks. On the other side in many cases models of the truck-trailer are developed

from the physical point of view and usually are unsuitable for application of such methods

like feedback linearization. Of course, one can linearize the model around a number of

operating points, but as it was mentioned in [32] such approach can be computationally

complicated and requires considerable design effort.

Neural networks based modeling and such a classical technique like dynamic output feed-

back linearization were combined in [6] with a purpose to control the backing up truck-

trailer. Backward motion of a truck-trailer is modeled by NN-based ANARX model and

after that the linearization (5.1.5) and (5.1.6) is appliedas a control technique.

Consider the problem of backing up control of the truck-trailer. The problem is to control

the steering angle in order to track the desired trajectory of the truck-trailer from any

initial position. Following equations were proposed by [17] to model the dynamics of the

truck-trailer

x1(k + 1) = x1(k) + v · T
l
· tan[u(k)]

x2(k + 1) = x2(k) + v · T
L
· sin[x5(k)]

x3(k + 1) = x3(k) + v · T · cos[x5(k)] · sin
[

x2(k+1)+x2(k)
2

]

x4(k + 1) = x4(k) + v · T · cos[x5(k)] · cos
[

x2(k+1)+x2(k)
2

]

x5(k) = x1(k) − x2(k)

, (5.2.1)

wherex1(k) is the angle of truck,x2(k) is the angle of trailer, (x4(k), x3(k)) is horizontal

and vertical positions of the rear end of trailer, respectively, x5(k) is the angle between

truck and trailer,u(k) is the steering angle,l is the length of the truck,L is the length
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of the trailer,T is the sampling time andv is the constant speed of backing up. Fig. 5.3

shows the model of the truck-trailer.

l L

x1

x2

x5

(x4, x3)

u

Figure 5.3: Truck-trailer and main parameters of its model

The following parameters of the truck-trailer were used foridentification and making

experiments:

• l = 2.8 (m)

• T = 1.0 (s)

• L = 5.5 (m)

• v = −1.0 (m/s)

While the system (5.2.1) describes the behavior of the truck-trailer with high level of

precision, it is shown in [29] that such system is not linearizable by dynamic output feed-

back and as a result could not be used directly for the feedback design. Thus, NN-based

ANARX structure was chosen as an alternative to model the system (5.2.1).

In order to obtain an input-output data for identification, the plant (5.2.1) was simulated

with Uniform Random Number signalu(k) ∈ [−π/4, π/4]. Steering angle was used as

the input of the model and the vertical position of the rear end of the trailerx3(k) was

considered as the output of the model. Then, the neural network based ANARX structure

with three sublayers, with respect to the third order model,was trained by theLevenberg-

Marquardtalgorithm. Three neurons and logarithmic sigmoid activation functions were
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used in each sublayer. After 5000 training epochs the mean square error (MSE) was

approximately 0.001. The identified model is represented bythe following equation

y(k) =

3
∑

i=1

Ci

1 + e−Wi·[y(k−i),u(k−i)]T
, (5.2.2)

whereCi andWi are matrices of synaptic weights (identified parameters of the model)

andy(k) = x3(k).

After the system (5.2.1) was identified by NN-based ANARX model (5.2.2), the lineariza-

tion algorithm (5.1.5) and (5.1.6) was applied. Newton’s method was used for numerical

calculation of the control signalu(k) from (5.1.5). Notice that the aim of the control

algorithm is to keep the angle between truck and trailerx5(k) as close to 0 as possible.

In order to see simulation results of behavior of the truck-trailer, a number of experiments

of constructed system have been made. Different initial anddesired positions of the truck-

trailer were chosen. Table 5.1 presents state parameters.

Table 5.1: Initial and desired parameters of the truck-trailer.

Initial position Desired positionv(k)

Number of
x1(0) x2(0) y(0) = x3(0) y(k) → v(k)

experiment

1 10 ◦ −20 ◦ 10 m 0 m

2 0 ◦ 0 ◦ 0 m −10 m

3 −20 ◦ 45 ◦ 0 m 5 m

4 −180 ◦ −180 ◦ 0 m 20 sin(0.03t) m

5 0 ◦ 0 ◦ 0 m 55 m

Experiments 1-4 show the movement of the truck-trailer to the desired line. Experiment

5 is harder, in this case the desired trajectory is describedby sinusoidal signal. The

following Figs. 5.4(a)-5.4(e) show simulation results foreach experiment.

The application of NN-based ANARX structure for identification of the truck-trailer sys-

tem was shown above. On the one side such approach benefits from high precision of

NN-based models and on the other side employment of such structure makes it possible

to apply such classical technique like dynamic output feedback linearization. The con-
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Figure 5.4: Simulation results of the controlled system (5.2.1)
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trol algorithm does not use the model entirely, but only its identified parameters for the

calculation of the control signal and dynamics of the controller.

The model of the truck-trailer (5.2.1) imposes a number of physical restrictions such as

u(k) ∈ [−π/4, π/4] andx5(k) ∈ [−π/2, π/2]. Under such conditions it is quite difficult

to provide a good enough identification and obtain a model with high degree of accuracy.

Another problem is expressed in terms that these restrictions should be included in the

control algorithm for the calculation of the control signal. Therefore, all these reasons

make this approach a very complex for the solution of this problem. For more details we

refer the reader to [6].

5.2.2 NN-based Simplified ANARX Structure

Additionally to Newton’s method an alternative technique was proposed in [34]. The

problem of calculation of the inverse functionF−1(y(k), η1(k)) in (5.1.5) can be solved

by imposing an additional restriction on NN-based ANARX structure and introducing a

new subclass of ANARX models, so called NN-based Simplified ANARX structure or

shortly NN-based SANARX, where the first sublayer is linear.It means that the function

φ1(·) is a linear transfer function. In this case, it follows from equation (5.1.4) that NN-

based SANARX model can be described by the following formula

y(k) = C1 ·W1 · [y(k − 1), u(k − 1)]T +
n
∑

i=2

Ciφi

(

Wi · [y(k − i), u(k − i)]T
)

. (5.2.3)

Such NN-based SANARX models belong to the class of ANARX models. Therefore,

ANARX based dynamic output feedback linearization algorithm can be applied to control

of the systems identified by NN-based SANARX structure. It means that equations (5.1.5)

and (5.1.6) can be rewritten as follows

C1 ·W1 · [y(k), u(k)]
T = η1(k) (5.2.4)
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and

η1(k + 1) = η2(k) − C2φ2

(

W2 · [y(k), u(k)]
T
)

η2(k + 1) = η3(k) − C3φ3

(

W3 · [y(k), u(k)]
T
)

...

ηn−2(k + 1) = ηn−1(k) − Cn−1φn−1

(

Wn−1 · [y(k), u(k)]
T
)

ηn−1(k + 1) = v(k) − Cnφn

(

Wn · [y(k), u(k)]T
)

. (5.2.5)

Such restriction, imposed by NN-based SANARX structure, guarantees that the control

signalsu(k) can be easily calculated from a system of linear equations, by using the

following expression

u(k) = T−1
2 (η1(k) − T1 · y(k)), (5.2.6)

whereT = C1 ·W1 andT = [T1 T2] andT2 is a nonsingular square matrix.

It has to be mentioned that in case of SISO systemsT ∈ R
2 is a2 × 1 vector and as a

resultT1, T2 ∈ R are real numbers. The author refers the reader to [34] for additional

details.

The following examples show the application of the control technique described above.

Example 5.2.2The second order discrete-time system of a Heat Exchanger [8], [37] is

described by the following input-output equation

y(k + 2) = 2.301 + 0.9173y(k + 1) + 0.449u(k + 1)+

+ 0.04577u(k) − 0.01889y2(k + 1) − 0.00999u2(k + 1)−

− 0.002099y2(k + 1)u(k + 1) − 0.002434u3(k + 1)

(5.2.7)

and presented in Figure 5.5.

The system (5.2.7) was simulated and the obtained set of the input-output data was used

for training of SISO NN-based Simplified ANARX structure with Levenberg-Marquardt

algorithm and modeling (5.2.7). The network shown in Fig. 5.1 was trained with two

sublayers corresponding to the second order of the model. The pure linear activation

function was chosen on the first sublayer, with respect to theSANARX structure, and the

logarithmic sigmoid activation function on the second sublayer. Identified parameters of
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Figure 5.5: The Heat Exchanger

the model have the following values.

W1 =











0.7359 −0.0026

0.8173 0.8089

0.0971 0.6378











,

W2 =











73.0334 241.0942

−14.7492 −0.5395

−2.3186 −0.6359











,

C1 =
[

0.2401 0.6350 −0.3261
]

,

C2 =
[

3.0404 −161.2081 161.3956
]

.

Using identified parameters and equation (5.2.6), the control signalu(k) for the nonlinear

system (5.2.7) can be calculated as follows

u(k) = 3.2779η1(k) − 2.1765y(k).
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The dynamic output feedback linearization algorithm (5.2.4) and (5.2.5) was applied to

control the system (5.2.7) and the piecewise constant reference signalv(k) was used for

its testing. The quality of tracking algorithm is depicted in Fig. 5.6.

0 100 200 300 400 500
9

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

Time Steps

O
ut

pu
t

reference signal
output of the system

Figure 5.6: Closed loop simulation with piecewise constantreference signal

It can be seen from Fig. 5.6 that the control system is capableof tracking the reference sig-

nalv(k), when the NN-based SANARX structure is used and control technique described

above applied.

Example 5.2.3The nonlinear SISO continuous-time system [11] is described by the fol-

lowing state equations

ẋ1 = x2

ẋ2 = − sin x1 + 0.01u− 0.5x2

y = x1 + x2

. (5.2.8)

Next, we find the discrete-time model of the system (5.2.8), and for this purpose we

use the functionDiscretization. Then, the system (5.2.8) can be entered in the

following way

In[2]:= f = {x2[t],-Sin[x1[t]]-0.5*x2[t]+0.01*u[t]};

Xt = {x1[t],x2[t]};
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Ut = {u[t]};

contSys = StateSpace[f,Xt,Ut,t,TimeDerivative];

After that, we call the functionDiscretization with the following arguments.

In[6]:= Discretization[contSys,PrintInfo->True,Method->Taylor,

ApproximationOrder->2]

x1(T+kT) = x1(kT)+Tx2(kT)+
T2

2 (-sin(x1(kT))+
1

100u(kT)

- 1
2x2(kT))

x2(T+kT) = x2(kT)+T (-sin(x1(kT))+
1

100u(kT)-
1
2x2(kT))

+ T2

2 (12sin(x1(kT))-
1

200u(kT)-cos(x1(kT))x2(kT)+
1
4x2(kT))

Out[6]= {x1[kT]+Tx2[kT]+
T2

2 (-Sin[x1[kT]]+
1

100u[kT]-
1
2x2[kT]),

x2[kT]+T (-Sin[x1[kT]]]+
1

100u[kT]-
1
2x2[kT])

+ T2

2 (12Sin[x1[kT]]-
1

200u[kT]-Cos[x1[kT]]]x2[kT]+
1
4x2[kT])}

As a result the discrete-time model is described by the previous equations. Next, we enter

the obtained model.

In[7]:= f2 = %;

Xk = {x1[k*T],x2[k*T]};

Uk = {u[k*T]};

discrSys = StateSpace[f2,Xk,Uk,k,Shift];

After that, in order to verify the accuracy, we call the functionDiscretizationPlot.

In[11]:= DiscretizationPlot[contSys,discrSys,{0.1,1},{1},{t,0,15},

0.5,AllInOne->False]

Out[11]= { , }

As we can see from presented above figures, the precision of obtained discrete-time model

is good enough and we can use it in the further research.
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The discrete-time model was simulated and the obtained set of the input-output data

was used for training of SISO NN-based Simplified ANARX structure withLevenberg-

Marquardt algorithm. The network shown in Fig. 5.1 was trained with twosublayers

corresponding to the second order of the model. The pure linear activation function was

chosen on the first sublayer, with respect to the SANARX structure, and the logarithmic

sigmoid activation function on the second sublayer. Identified parameters of the trained

model have the following values.

W1 =

















0.5919 0.8234

−0.6428 0.5386

0.4342 −0.1167

−0.3718 −0.9170

















,

W2 =





























1.2039 0.0047

−1.3031 −0.0037

−0.5962 −0.3103

−0.6109 −0.3104

1.3798 −2.3620

3.4453 −0.0075





























,

C1 =
[

−0.6075 −0.5085 0.7072 −0.9477
]

,

C2 =
[

−1.1632 1.0746 −0.5305 0.5304 0.0000 0.0887
]

.

After that, the control technique proposed in [34] was applied to control the model. The

following reference signalv(k) = sin(0.1k+ 0.5) + 0.3 sin(0.35k+ 0.1) was used for its

testing. The simulation result of is represented in Fig. 5.7.

It can be seen from Fig. 5.7 that the output of the model closely follows the reference

signalv(k), when the SANARX structure is used and control technique from [34] applied.

5.2.3 Additional static neural network based approach

Further, we describe another technique as a solution of the problem of control signals

calculation from (5.1.5), see [36] for details. Because of well known neural networks

approximation capabilities, a neural network can be trained to approximate the function
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Figure 5.7: Closed loop simulation with sinusoidal reference signal

(5.1.5) and to find the inverse functionF−1(y(k), η1(k)). This function is a static function

of argumentsu(k) andy(k) and produces output valuesη1(k). When ANARX model is

obtained, this function can be considered as a separate system and simulated with ran-

dom inputs to produce a set of input-output data, which can beused as a training set for

approximation of the function

u(k) = ψ(y(k), η1(k)), (5.2.9)

whereψ(·) is a nonlinear map performed by a feed-forward neural network. According

to Stone-Weierstrass theorem [16], [42], a two-layer perceptron with nonlinear sigmoid

activation functions on its hidden layer is capable of approximating any arbitrary contin-

uous map to within a desired accuracy. It means that function(5.2.9) can be obtained by

training a two-layer perceptron

u(k) = C0φ0

(

W0 · [y(k), η1(k)]
T
)

, (5.2.10)

whereW0 is the matrix of synaptic weights of neurons between input and hidden layers,

C0 is the vector of output layer synaptic weights andφ0(·) is a nonlinear sigmoid-type

activation function of the hidden layer neurons.

When NN-based ANARX model is used to identify a nonlinear system, the first sublayer
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(5.1.5) can be considered as a system for generating a data set for training the neural

network (5.2.10).

NN-ANARX based dynamic output feedback linearization control algorithm (5.1.5) and

(5.1.6) can now be represented as follows

u(k) = C0φ0

(

W0 · [y(k), η1(k)]
T
)

η1(k + 1) = η2(k) − C2φ2

(

W2 · [y(k), u(k)]
T
)

η2(k + 1) = η3(k) − C3φ3

(

W3 · [y(k), u(k)]
T
)

...

ηn−2(k + 1) = ηn−1(k) − Cn−1φn−1

(

Wn−1 · [y(k), u(k)]
T
)

ηn−1(k + 1) = v(k) − Cnφn

(

Wn · [y(k), u(k)]T
)

. (5.2.11)

The structure of the corresponding control system is depicted in Fig. 5.8.
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Figure 5.8: NN-ANARX model based control with additional neural network

The practical application of this approach is shown by the following example.

Example 5.2.4The nonlinear SISO discrete-time system of a jacketed Continuous Stirred

Tank Reactor (CSTR) [33], [37] is described by the followinginput-output equation

y(k + 2) = 0.7653y(k + 1) − 0.231y(k) + 0.4801u(k + 1)−

− 0.6047y2(k + 1) + 1.014y(k)y(k + 1) − 0.3921y2(k + 1)+

+ 0.592y(k + 1)u(k + 1) − 0.5611y(k)u(k + 1)

(5.2.12)

and presented in Figure 5.9.

The system (5.2.12) was simulated with sinusoidal input signal u(k) = sin(0.08k) +

0.08e(k), wheree(k) is normally distributed sequence with zero mean, varianceσ2 = 1
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Figure 5.9: The Jacketed Continuous Stirred Tank Reactor

and standard deviationσ = 1, and a set of training input-output data obtained. This

training data set was used to train NN-based ANARX structure(5.1.4) withLevenberg-

Marquardtalgorithm to model the system (5.2.12). The network shown inFig. 5.1 was

trained with three sublayers corresponding to the third order of the model and hyperbolic

tangent sigmoid hidden layer activation functions on each sublayer. In this case, identified

parameters of the model have the following values.

W1 =











2.0975 0.0897

−0.8384 0.7745

0.5225 −0.0020











,

W2 =

















−2.7080 0.8569

−2.1183 2.7942

2.6811 −0.8399

−2.1036 2.7818

















,

W3 =











−0.0516 0.0156

−0.1247 0.0377

−7.7123 9.6498











,

C1 =
[

0.1430 0.6203 3.4767
]

,

C2 =
[

−31.8444 30.2608 −32.5052 −30.5429
]

,

C3 =
[

821.9564 −341.1409 −0.0109
]

.
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After training the model, its identified parametersC1 andW1 were used for simulating

the static function (5.1.5) with random inputs and the obtained data set was used to train

a two-layer perceptron (5.2.10) with hyperbolic tangent sigmoid transfer function on its

hidden layer. After that, using identified parametersW0, W2, W3, C0, C2 andC3, the

controller for the system (5.2.12) can be represented by thefollowing equations































u(k) = C0

(

2

1 + e−2·W0·[y(k),η1(k)]T
− 1

)

η1(k + 1) = η2(k) − C2

(

2

1 + e−2·W2·[y(k),u(k)]T
− 1

)

η2(k + 1) = v(k) − C3

(

2

1 + e−2·W3·[y(k),u(k)]T
− 1

)

.

The control algorithm (5.2.11) was applied to control the system (5.2.12) and the piece-

wise constant reference signalv(k) was used for its testing. The simulation result of the

system is represented in Fig. 5.10.
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Figure 5.10: Closed loop simulation with piecewise constant reference signal

The corresponding control signalu(k) is depicted in Fig. 5.11.

It can be seen from Fig. 5.10 that the output of the system (5.2.12) and reference signal

v(k) are almost indistinguishable, when the ANARX structure andcontrol algorithm,

based on additional static neural network, are used.
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5.2.4 Taylor Series based approach

Taylor Series based method was proposed in [7] as an alternative technique, which helps

to solve the problem of control signals calculation from (5.1.5).

This approach can be divided into two following submethods:

• With multiplying by thepseudoinversematrixC+
1 .

• Without multiplying by thepseudoinversematrixC+
1 .

First of all, for better understanding, the equation (5.1.5) can be rewritten in the following

form











c11 · · · c1l1

...
. . .

...

cm1 · · · cml1











· φ1





































m
∑

i=1

w1iyi(k) +
r
∑

j=1

w1(m+j)uj(k)

...
m
∑

i=1

wl1iyi(k) +
r
∑

j=1

wl1(m+j)uj(k)





































=











η11(k)
...

ηm1(k)











.

(5.2.13)
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Case of multiplying by the pseudoinverse matrix C+
1

In order to obtain the vector of control signalsu(k), we should to multiply both sides of

(5.2.13) by inverse matrixC−1
1 from the left. Here we have two possibilities:

• C1 is not a square matrix. Then theleft pseudoinversematrixC+
1 can be found by

using, for example,Moore-Penrose1 or Singular value decompositionmethods.

• C1 is a square matrix. Then the inverse matrixC−1
1 can be found by standard

techniques.2

Consider the first case as a more general. It means that the number of outputs in neural net-

work must not be equal to the number of hidden neurons in the first sublayer, i.e.m 6= l1.

Denote the result after multiplication matricesC+
1 andη1 by d(k) = [d1(k), . . . , dl1(k)]

T .

Then, the equation (5.2.13) takes the following form











1 · · · 0
...

.. .
...

0 · · · 1











· φ1





































m
∑

i=1

w1iyi(k) +

r
∑

j=1

w1(m+j)uj(k)

...
m
∑

i=1

wl1iyi(k) +

r
∑

j=1

wl1(m+j)uj(k)





































=











d1(k)
...

dl1(k)











.

The previous equation can be rewritten as the system ofl1 equations






































φ1

(

m
∑

i=1

w1iyi(k) +

r
∑

j=1

w1(m+j)uj(k)

)

= d1(k)

...

φ1

(

m
∑

i=1

wl1iyi(k) +

r
∑

j=1

wl1(m+j)uj(k)

)

= dl1(k)

. (5.2.14)

On the next step we can find Taylor series expansion of the function φ1(·) as follows


























φ1(a) + φ
′

1(a)(x1(k) − a) + · · ·+Rs1 [x1(k)] = d1(k)

...

φ1(a) + φ
′

1(a)(xl1(k) − a) + · · · +Rsl1
[xl1(k)] = dl1(k)

, (5.2.15)

1Using this method aleft pseudoinversematrix C+
1 can be found as followsC+

1 = (CT
1 · C1)

−1 · CT
1

and its dimension will be (l1 × m · m × l1)
−1 · l1 × m = l1 × m.

2It is obvious that matrixC1 must be nonsingular.
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where

x1(k) =
m
∑

i=1

w1iyi(k) +
r
∑

j=1

w1(m+j)uj(k),

. . . ,

xl1(k) =
m
∑

i=1

wl1iyi(k) +
r
∑

j=1

wl1(m+j)uj(k)

andRsi
[xi(k)] is a remainder term known as the Lagrange remainder.

Taking into account required precision, we can form a systemof polynomial equations

such that the left hand side of each equation will be formed byfirst si, i = 1, . . . , l1 terms

of corresponding equation in (5.2.15). Note that value ofsi depends on required precision.

Let bi be the real root of the correspondingli-th equation in (5.2.15). Then, the control

vector can be calculated by solving the following system of linear equations with respect

to u(k).


























w1(m+1)u1(k) + · · · + w1(m+r)ur(k) = b1

...

wl1(m+1)u1(k) + · · ·+ wl1(m+r)ur(k) = bl1

(5.2.16)

Case where multiplication by thepseudoinverse matrix C+
1 is not required

By analogy with the previous case we can transform (5.2.13),after deriving Taylor series

of the functionφ1(·) about a pointa, into the following form










c11 · · · c1l1

...
. . .

...

cm1 · · · cml1











·











φ1(a) + φ
′

1(a)(x1(k) − a) + · · · +Rs1 [x1(k)]
...

φ1(a) + φ
′

1(a)(xl1(k) − a) + · · · +Rsl1
[xl1(k)]











=











η11(k)
...

ηm1(k)











.

(5.2.17)

Then, after multiplying matrices at the left part of (5.2.17), we obtain the system ofm

equations andr unknowns.






















































c11
(

φ1(a) + φ
′

1(a)(x1(k) − a) + · · · +Rs1[x1(k)]
)

+

+c1l1

(

φ1(a) + φ
′

1(a)(xl1(k) − a) +Rsl1
[xl1(k)]

)

= η11(k)

...

cm1

(

φ1(a) + φ
′

1(a)(x1(k) − a) + · · · +Rs1[x1(k)]
)

+

+cml1

(

φ1(a) + φ
′

1(a)(xl1(k) − a) +Rsl1
[xl1(k)]

)

= ηm1(k)

(5.2.18)
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Let s1 = · · · = sl1 = 1, then it follows from (5.2.18) that the vector of control signals

u(k) can be easily calculated using the following formula

u(k) = (C1 ·W12)
−1(4η1(k) − C1(2 +W11 · y(k))), (5.2.19)

where matricesW11 andW12 are defined as

W1 = W11











y1(k)
...

ym(k)











+W12











u1(k)
...

ur(k)











.

The following two examples illustrate methods described above in this section. The first

example considers the second method as a control technique of a single-input single-

output system. The second example demonstrates applicability of the first method to

control of a nonlinear multi-input multi-output system.

Example 5.2.5The model of a liquid level system of interconnected tanks [8] is repre-

sented by the following input-output equation

y(k + 3) = 0.43y(k + 2) + 0.681y(k + 1) − 0.149y(k) + 0.396u(k + 2)

+ 0.014u(k + 1) − 0.071u(k) − 0.351y(k + 2)u(k + 2)

− 0.03y2(k + 1) − 0.135y(k + 1)u(k + 1) − 0.027y3(k + 1)

− 0.108y2(k + 1)u(k + 1) − 0.099u3(k + 1).

(5.2.20)

The system (5.2.20) was simulated and the obtained set of theinput-output data was

used for training NN-based ANARX structure withLevenberg-Marquardtalgorithm and

modeling (5.2.20). Identified parameters of the trained model have the following values.

W1 =











−0.0069 0.1429

1.0365 −0.1062

1.0732 −0.3226











,

W2 =























1.9410 1.2864

−1.3609 −0.1965

2.1961 0.8532

2.4046 1.4411

1.6330 0.5994























,
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W3 =























1.1438 0.5369

0.6990 0.2296

0.4645 −0.8094

0.4570 −0.2183

−1.5120 −0.8273























,

C1 =
[

49.6393 −21.0410 25.4327
]

,

C2 =
[

16.7279 −20.1029 13.5191 −10.2899 −38.5246
]

,

C3 =
[

−22.8377 55.3185 22.6860 −67.1972 −3.3984
]

.

Logarithmic sigmoid hidden layer activation functionslogsig(x) = 1
1+e−x were used for

identification of the model. Notice that Taylor series expansion of logsig(x) about the

pointa = 0 is 1
1+e−x = 1

2
+ x1

4
−

x3
1

48
+

x5
1

480
−

x7
1

80640
+. . .. Let us chooses1 = s2 = s3 = 1, then

only two terms of the series should be taken into account. In this case, using identified

parameters and the equation (5.2.19), the control signalu(k) can be calculated as follows

u(k) = 3.552η1(k) − 100.524y(k).

Simulation result is depicted in Figure 5.12 and clearly shows that closed loop system is

capable of tracking reference signal.
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Figure 5.12: Simulation results of the system (5.2.20)
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Example 5.2.6Consider the following MIMO discrete-time system [22]

y1(k + 1) = 0.4y1(k) +
u1(k)

1 + u2
1(k)

+ 0.2u3
1(k) + 0.5u2(k)

y2(k + 1) = 0.2y2(k) +
u2(k)

1 + u2
2(k)

+ 0.4u3
2(k) + 0.2u1(k)

. (5.2.21)

It was identified by the second order NN-based ANARX model with 2 and 5 neurons on

the first and the second sublayers, respectively. Logarithmic sigmoid activation functions

were used in each sublayer. Identified parameters of the trained model have the following

values.

W1 =





0.0708 −0.0398 0.0345 −0.0061

−0.0635 0.0022 −0.0363 −0.0235



 ,

W2 =























−18.8125 8.7142 −22.5216 −2.5913

−16.5408 7.1620 −20.0015 −1.9538

−0.0497 0.0086 −0.0824 −0.0210

0.0672 −0.0215 0.1016 −0.0199

17.5238 −7.8347 21.0865 2.2320























,

C1 =





4.5297 −85.2722

−118.8578 −135.2028



 ,

C2 =





0.9718 1.2593 61.0178 24.3266 2.2261

16.8692 22.1391 101.6562 74.4212 38.9746



 .

Let us chooses1 = s2 = 3 in (5.2.15), with respect to approximation of the logarith-

mic sigmoid function with cubic polynomials. After applying (5.2.15) and (5.2.16), the

control signalsu1(k) andu2(k) can be calculated in the following way











0.0345u1(k) − 0.0061u2(k) = b1

−0.0363u1(k) − 0.0235u2(k) = b2

,

whereb1 andb2 are defined as follows

b1 = Root

[

1

2
+
x1(k)

4
−
x3

1(k)

48
= d1(k)

]

− 0.0708y1(k) + 0.0398y2(k)

and

b2 = Root

[

1

2
+
x2(k)

4
−
x3

2(k)

48
= d2(k)

]

+ 0.0635y1(k) − 0.0022y2(k).
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Figure 5.13: Closed loop simulation with piecewise constant reference signal

The system (5.2.21) was simulated with piecewise constant reference signalsv1(k) and

v2(k), and simulation results are depicted in Figure 5.13.

It can be clearly seen that proposed technique provides acceptable tracking results.

5.2.5 Analytical approach

The technique presented below provides an analytical method for calculation of the in-

verse functionF−1(y(k), η1(k)) of (5.1.2), in order to make it possible implementation

of the NN-ANARX structure based dynamic output feedback linearization algorithm for

control of nonlinear systems.

Consider the equation (5.1.5) of the first nonlinear sublayer of the neural network depicted

in Fig. 5.1. After multiplying matricesW1 and[y(k), u(k)]T we can make a number of

transformations and rewrite equation (5.1.5) in the following way
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c11 · · · c1l1

...
. . .

...

cm1 · · · cml1











· φ1





































m
∑

i=1

w1iyi(k) +

r
∑

j=1

w1(m+j)uj(k)

...
m
∑

i=1

wl1iyi(k) +
r
∑

j=1

wl1(m+j)uj(k)





































=











η11(k)
...

ηm1(k)











.

(5.2.22)

In order to continue transformations of (5.2.22), we shouldmultiply its both sides by in-

verse matrixC−1
1 from the left. Analogously with Taylor series based approach described

above, here we have the same two possibilities:

• C1 is not a square matrix.

• C1 is a square matrix.

Consider the first case as a more general. It means that the number of outputs in neu-

ral network should not be equal to the number of hidden neurons in the first sublayer,

i.e. m 6= l1. Define the result after multiplication of matricesC+
1 andη1(k) asD =

[d1(k), . . . , dl1(k)]
T . Thus, the equation (5.2.22) can be rewritten in the following way











1 · · · 0
...

. . .
...

0 · · · 1











· φ1





































m
∑

i=1

w1iyi(k) +
r
∑

j=1

w1(m+j)uj(k)

...
m
∑

i=1

wl1iyi(k) +
r
∑

j=1

wl1(m+j)uj(k)





































=











d1(k)
...

dl1(k)











.

After multiplying matricesIl1 andφ1(·), we obtain the system of the form






































φ1

(

m
∑

i=1

w1iyi(k) +

r
∑

j=1

w1(m+j)uj(k)

)

= d1(k)

...

φ1

(

m
∑

i=1

wl1iyi(k) +
r
∑

j=1

wl1(m+j)uj(k)

)

= dl1(k)

.

Further, after finding the inverse functionφ−1
1 (·), we obtain the following system ofl1
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equations andr variables


























w1(m+1)u1(k) + · · ·+ w1(m+r)ur(k) = b1(k)

...

wl1(m+1)u1(k) + · · · + wl1(m+r)ur(k) = bl1(k)

, (5.2.23)

where

b1(k) = φ−1
1 (d1(k)) −

m
∑

i=1

w1iyi(k),

. . . ,

bl1(k) = φ−1
1 (dl1(k)) −

m
∑

i=1

wl1iyi(k).

Remark 5.2.1 It follows from(5.2.23), that the activation functionφ1(·) of the first hid-

den layer must be invertible.

Consider the most popular sigmoid type neurons activation functions of the first hidden

sublayer:

• Logarithmic sigmoid transfer functionlogsig(x) = 1
1+e−x .

• Hyperbolic tangent sigmoid transfer functiontansig(x) = 2
1+e−2x − 1.

For these functions the restriction imposed by Remark 5.2.1is satisfied and as a result the

equation (5.2.23) can be rewritten as follows.

In case of logarithmic sigmoid function the system (5.2.23)can be transformed in the

following way


























w1(m+1)u1(k) + · · ·+ w1(m+r)ur(k) = b1(k)

...

wl1(m+1)u1(k) + · · · + wl1(m+r)ur(k) = bl1(k)

, (5.2.24)

where

b1(k) = ln
(

d1(k)
1−d1(k)

)

−
m
∑

i=1

w1iyi(k),

. . . ,
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bl1(k) = ln
(

dl1
(k)

1−dl1
(k)

)

−
m
∑

i=1

wl1iyi(k).

If we discuss analogously for the second function, then the system (5.2.23) is similar to

(5.2.24), but where

b1(k) = 1
2
· ln
(

1+d1(k)
1−d1(k)

)

−
m
∑

i=1

w1iyi(k),

. . . ,

bl1(k) = 1
2
· ln
(

1+dl1
(k)

1−dl1
(k)

)

−
m
∑

i=1

wl1iyi(k).

Proposition 5.2.1 In order to obtain theexact solution of(5.2.23), the following condi-

tions must be satisfiedr = l1 = m, otherwise anoptimal solution can be found.

Proof: The proof of that fact follows directly from dimensions of matricesC1 andW12,

whereW12 is a l1 × r submatrix ofl1 × (m+ r) matrixW1, i.e.

W12 =











w1(m+1) · · · w1(m+r)

...
. . .

...

wl1(m+1) · · · wl1(m+r)











.

The effectiveness of the proposed approach is demonstratedby applying it to the following

academical examples.

Example 5.2.7Consider the nonlinear MIMO discrete-time system from Example 5.2.6.

The identification and modeling processes were shown above.Thus, we can simply use

the obtained model of the system (5.2.21) and all identified parametersW1, W2, C1 and

C2, in order to check the tracking capabilities of the proposedanalytical approach.

Using identified parameters and the system of equations (5.2.24), the control signalsu1(k)

andu2(k) can be calculated as follows











0.0345u1(k) − 0.0061u2(k) = b1(k)

−0.0363u1(k) − 0.0235u2(k) = b2(k)

,

where

b1(k) = ln

(

0.0142η11(k) − 0.009η21(k)

1 − 0.0142η11(k) + 0.009η21(k)

)

− 0.0708y1(k) + 0.0398y2(k)
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and

b2(k) = ln

(

−0.0125η11(k) + 0.0005η21(k)

1 + 0.0125η11(k) − 0.0005η21(k)

)

+ 0.0635y1(k) − 0.0022y2(k).

The system (5.2.21) was simulated with the same piecewise constant reference signals

v1(k) andv2(k) as in Example 5.2.6, and simulation results are depicted in Figure 5.14.
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Figure 5.14: Closed loop simulation with piecewise constant reference signals

One can easily see from Fig. 5.14 that simulation results in case of analytical approach

are almost the same as in case of Taylor series based approachpresented in the previous

example.

Example 5.2.8The nonlinear MIMO discrete-time system [31] is described by the fol-

lowing input-output equations

y1(k + 1) =
y1(k)

1 + y2
2(k)

+ u1(k)

y2(k + 1) =
y1(k)y2(k)

1 + y2
2(k)

+ u2(k)
. (5.2.25)

The system (5.2.25) was simulated and the obtained set of theinput-output data was used

for training of MIMO NN-based ANARX structure withLevenberg-Marquardtalgorithm.

The network shown in Fig. 5.1 was trained with two sublayers corresponding to the

second order of the model and logarithmic sigmoid hidden layer activation functions were

used. As we are interested in the exact solution of (5.2.23),thenl1 = 2 was chosen.
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The system (5.2.25) was simulated with piecewise constant reference signalsv1(k) and

v2(k), and simulation results are depicted in Figure 5.15.
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Figure 5.15: Closed loop simulation with piecewise constant reference signals

It can be seen from Fig. 5.15 that the control system is capable of tracking both reference

signalsv1(k) andv2(k) when the analytical approach for the control signals calculation is

applied.

5.3 Discussion

In this section the author presents a brief analysis of advantages and drawbacks of control

techniques described in the previous section. The main reason why the following methods

have been created relies on the fact, that ANARX structure byitself is nothing more than

a convenient form of representation of the identified model.Thus, without possibility of

calculating control signals, it cannot be used in control application.

Newton’s method can be applied to control any nonlinear SISOsystem identified by an

NN-based ANARX model. It can be used for solving the main problem associated with

ANARX structure, namely calculation of the control signalsu(k). Unfortunately, the con-

vergence speed of a such classical numerical algorithm and high complexity of applying
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it to MIMO systems make use of this method undesirable for solving hard enough tasks.

In order to overcome problems with application of Newton’s method to control of non-

linear systems of different complexity and make calculation of the control signals fast

enough, a new class of ANARX structure, so called Simplified ANARX, was intro-

duced in [34]. As was mentioned above, SANARX imposes an additional restrictions

on ANARX structure, removing nonlinearity from the first term of (5.1.1) and replacing

it with a linear function. In case of neural networks, the structure depicted in Fig. 5.1

with the linear transfer function on the first sublayer can beused for identification of

NN-based SANARX model. The practice has shown that this is the most simple and fast

enough technique for control signals calculation. Unfortunately, SANARX can be applied

only to systems with equal number of inputs and outputs, i.e.r = m.

Although Simplified ANARX structure proofed itself as a reliable technique, unfortu-

nately, the linearity of the first term in (5.1.1) reduces theclass of functions to be identi-

fied. Therefore, another technique for the control signalsu(k) calculation was proposed in

[36], in order to avoid this restriction. This approach is based on an additional static neu-

ral network and does not impose any restrictions on ANARX structure. Unfortunately,

the training of the additional neural network for approximation of the inverse function

F−1(y(k), η1(k)) takes some time. Of course, one can make it offline and after that use

this method in control application. But if we talk about online learning of the neural net-

work and especially about adaptive control, then from the computational point of view

this technique is undesirable.

Additionally to methods described above, an alternative technique was proposed by the

author in [7]. This approach is based on Taylor series and canbe divided into the following

submethods.

The first of them allows to simplify the process of control vector calculation and reduce it

to finding a solution for each ofl1 polynomial equations of the system (5.2.15), separately,

and after that solving the system of linear equations (5.2.16). On the one hand, such ap-

proach imposes the following rigid restrictionr = l1 = m. It should be noticed that such

restriction makes possible application of this method onlyto multi-input multi-output

systems with equal number of inputs and outputs and to some single-input single-output

systems. In case of SISO systemsl1 = 1, but, according to Stone-Weierstrass theorem, the
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minimal neural network, which can approximate a continuous-time nonlinear function of

any complexity, should be represented by a two-layer perceptron. It means thatl1 should

at least be equal 2. On the other hand this method allows to approximate almost any hid-

den layer activation function with an arbitrary accuracy, without dramatic increasing the

complexity of computational process. Unfortunately, it will be the vector of approximated

control signals. Besides that, the process of finding solutions of each polynomial equation

with an arbitrary degree of accuracy in some situations may become costly, even if one

uses numerical methods, not mentioning about techniques for symbolical calculations.

The second method allows partially to overcome the restriction r = l1 = m and to

reduce it only tor = m. As a result, this method can be applied to MIMO as well as to

SISO systems. On the one side, if the approximation order of the hidden layer activation

function differs from1, it means thats1 6= 1, . . . , sl1 6= 1, then the finding of the solution

of the system of equations (5.2.18) becomes an extremely difficult task. But on the other

side, if si = 1, then the vector of control signals can be easily calculatedusing equation

(5.2.19). In the last case this method is similar to the technique based on NN-SANARX

model, but without linearity, what can sometimes be important for identification process.

Finally, the last described technique is based on analytical calculation of the vector of

control signals. This method is similar to the first submethod of Taylor series based ap-

proach, but at the same time it does not require the finding solutions of polynomial func-

tions, what significantly improves the speed of control algorithm. The main disadvantage

of this method is that it imposes the same unpleasant restriction r = l1 = m, what makes

it applicable only to MIMO and some SISO systems.

Summarizing the information presented above, one can see that there is no method, which

will be panacea for any situation. In other words, the choiceof a method depends on a

problem to be solved.
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Conclusions

This chapter is devoted to summarizing of what has been studied and some of the results

achieved by the author.

Implementation in CASMathematicaof Taylor series expansion based and integration

based discretization methods for nonlinear continuous-time systems are discussed in de-

tail in the first part of the present thesis. The main result isa subfamily of five functions

for theNLControl package, which allows to

• check if a given system is finitely discretizable in the original coordinates by finding

a dilation with respect to the homogenous degree−1

• check if the Lie algebra associated with a given system is nilpotent or not. It means,

if locally there exist state coordinates in which this system is finitely discretizable

or not

• calculate homogeneous degrees of the vector fields associated with a continuous-

time system with respect to the dilation

• perform discretization using either Taylor series expansion or direct integration of

the differential equations

• plot outputs of original and discretizated systems

All these methods were implemented in the form of Mathematica functions and integrated

into theNLControl package.

One of the future goals is implementation of the function that finds the state coordinates

in which the nilpotent system is finitely discretizable. Nowthis function works only
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partially, on some simple examples. Besides that, the author plans to implement the

function that finds the nilpotent approximation to the arbitrary control system that opens

alternative possibility to find the approximate discrete-time model. Besides above, there

are many other ways to extend the present contribution. Based on the theoretical results of

[28], it is possible to drop the assumption of the piecewise constant control and implement

the more general sampled data models. It is equally important to drop the assumption

of equidistant (regular) sampling and allow the sampling rate to change based on the

computation resources availability [3].

The application of the specific neural network with so calledAdditive Nonlinear Au-

toregressive eXogenous structure for identification and control of nonlinear systems was

considered in the second part of the present thesis. This structure, from the control sys-

tems point of view, has a number of significant advantages. However, the only problem,

which complicates the application of this technique, is complexity of calculation of the

control signal from the dynamics of the controller. Therefore, a number of different so-

lutions were proposed, among them Newton’s method, NN-based Simplified ANARX

and the technique based on additional static neural network. Additionally to presented

methods, two more approaches were proposed by the author in order to overcome this

obstacle. Each of described techniques has a number of advantages and disadvantages

and as a result can be applied in different situations.

• Newton’s method

Advantages:

◦ can be used to control any nonlinear SISO system

Disadvantages:

◦ high complexity of applying to control of MIMO system

◦ the convergence speed

• The NN-based Simplified ANARX method

Advantages:

◦ pointed to control of SISO as well as MIMO systems
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◦ control signals can be calculated very easily, what followsfrom solving the

linear equation (in case of SISO system) or system of linear equations (in case

of MIMO system)

Disadvantages:

◦ imposes an additional restriction on NN-based ANARX structure, namely lin-

earity of the first sublayer

◦ applicable to systems with equal number of inputs and outputs

• Additional static neural network based approach

Advantages:

◦ can be used to control of SISO and MIMO systems

◦ does not impose any restrictions on ANARX structure

Disadvantages:

◦ requires time for training of the additional neural network

• Taylor series based approach

First submethod

Advantages:

◦ applicable to control of MIMO systems

◦ does not simplifies ANARX structure

◦ allows to approximate almost any hidden layer activation function with an ar-

bitrary accuracy without dramatic increasing the complexity of computational

process

Disadvantages:

◦ can be used to control of a very restricted class of SISO systems

◦ the number of inputs, first hidden layer neurons and outputs has to be equal

◦ the process of finding solutions of each polynomial equationwith an arbitrary

degree of accuracy in some situations may become costly
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Second submethod

Advantages:

◦ can be used to control of SISO and MIMO systems

◦ does not impose any restrictions on ANARX structure

◦ if the approximation order of the hidden layer activation function equals1,

then the vector of control signals can be calculated easily enough

Disadvantages:

◦ the number of inputs and outputs has to be equal

◦ in case if the approximation order of the hidden layer activation function

greater than1, then solving the system of polynomial equations becomes an

extremely difficult task

• The analytical approach

Advantages:

◦ can be used to control of MIMO systems

◦ does not impose any restrictions on ANARX structure

Disadvantages:

◦ can be used to control of a very restricted class of SISO systems

◦ the number of inputs, first hidden layer neurons and outputs has to be equal

◦ the hidden layer activation function has to be invertible

The effectiveness of each method was demonstrated in present thesis on several numerical

examples.

One of the possible directions for the future research is application of NN-based ANARX

model and dynamic output feedback linearization algorithmto control of a nonlinear

multi-input multi-output systems with unequal numbers of inputs and outputs. Besides

that, it is reasonable to adjust introduced techniques for the case of adaptive control.
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[13] Chowdhury, F. N., Kotta,̈U., Nõmm, S. On realizability of neural networks-based

input-output models. –Proceedings of the 3rd Int. Conf. on Differential Equations

and Applications, St. Petersburg, Russia, 2000, vol. 6, 47-51.

[14] Glad, T., Ljung, L. Control theory. Multivariable and Nonlinear Methods. New York:

Taylor & Francis, 2000.

[15] Hermes, H. Nilpotent and High-Order Approximations of Vector Field Systems. –

SIAM Review, 1991, vol. 33, no. 2, 238-264.

[16] Hunt, K. J., Irwin, G. R., Warwick, K. Neural Network Engineering in Dynamic

Control Systems: Advances in Industrial Control. London: Springer-Verlag, 1995.

[17] Ichihashi, H., Tokunaga, M. Neuro-Fuzzy Optimal Control ofBacking up a Trailer

Truck. – Proceedings of the IEEE International Conference on NeuralNetworks,

1993, 306-311.

[18] Kazentzis, N., Kravaris, C. System-theoretic properties of sampled-data representa-

tion of nonlinear systems obtained via Taylor-Lie series. –International Journal of

Control, 1997, vol. 67, 997-1020.

83



[19] Kong, S., Kosko, B. Adaptive fuzzy systems for backing up a truck-and-trailer. –

IEEE Transactions on Fuzzy Systems, 1992, vol. 3, no. 2, 211-223.
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[21] Kotta, Ü., Nõmm, S., Chowdhury, F. On a new type of neural network-based input-

output model: The ANARMA structure. –Proceedings of the 5th IFAC Symposium

on nonlinear control systems NOLCOS, St. Petersbourg, Russia, 2001, 1623-1626.

[22] Li, X., Bai, Y., Yang, L. Neural network online decoupling for a class of nonlin-

ear system. –Proceedings of the 6th World Congress on Intelligent Control and

Automation, Dalian, China, June 21-23, 2006, 2920-2924.
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